Biblio
In Particle Swarm Optimization Algorithm (PSO), the learning factors \$c\_1\$ and \$c\_2\$ are used to update the speed and location of a particle. However, the setting of those two important parameters has great effect on the performance of the PSO algorithm, which has limited its range of applications. To avoid the tedious parameter tuning, we introduce a transfer learning based adaptive parameter setting strategy to PSO in this paper. The proposed transfer learning strategy can adjust the two learning factors more effectively according to the environment change. The performance of the proposed algorithm is tested on sets of widely-used benchmark multi-objective test problems for DTLZ. The results comparing and analysis are conduced by comparing it with the state-of-art evolutionary multi-objective optimization algorithm NSGA-III to verify the effectiveness and efficiency of the proposed method.
We propose to use a genetic algorithm to evolve novel reconfigurable hardware to implement elliptic curve cryptographic combinational logic circuits. Elliptic curve cryptography offers high security-level with a short key length making it one of the most popular public-key cryptosystems. Furthermore, there are no known sub-exponential algorithms for solving the elliptic curve discrete logarithm problem. These advantages render elliptic curve cryptography attractive for incorporating in many future cryptographic applications and protocols. However, elliptic curve cryptography has proven to be vulnerable to non-invasive side-channel analysis attacks such as timing, power, visible light, electromagnetic, and acoustic analysis attacks. In this paper, we use a genetic algorithm to address this vulnerability by evolving combinational logic circuits that correctly implement elliptic curve cryptographic hardware that is also resistant to simple timing and power analysis attacks. Using a fitness function composed of multiple objectives - maximizing correctness, minimizing propagation delays and minimizing circuit size, we can generate correct combinational logic circuits resistant to non-invasive, side channel attacks. To the best of our knowledge, this is the first work to evolve a cryptography circuit using a genetic algorithm. We implement evolved circuits in hardware on a Xilinx Kintex-7 FPGA. Results reveal that the evolutionary algorithm can successfully generate correct, and side-channel resistant combinational circuits with negligible propagation delay.
Existing methods for multi-objective optimization usually provide only an approximation of a Pareto front, and there is little theoretical guarantee of finding the real Pareto front. This paper is concerned with the possibility of fully determining the true Pareto front for those continuous multi-objective optimization problems for which there are a finite number of local optima in terms of each single objective function and there is an effective method to find all such local optima. To this end, some generalized theoretical conditions are firstly given to guarantee a complete cover of the actual Pareto front for both discrete and continuous problems. Then based on such conditions, an effective search procedure inspired by the rising sea level phenomenon is proposed particularly for continuous problems of the concerned class. Even for general continuous problems to which not all local optima are available, the new method may still work well to approximate the true Pareto front. The good practicability of the proposed method is especially underpinned by multi-optima evolutionary algorithms. The advantages of the proposed method in terms of both solution quality and computational efficiency are illustrated by the simulation results.