Biblio
The number of resource-limited wireless devices utilized in many areas of Internet of Things is growing rapidly; there is a concern about privacy and security. Various lightweight block ciphers are proposed; this work presents a modified lightweight block cipher algorithm. A Linear Feedback Shift Register is used to replace the key generation function in the XTEA1 Algorithm. Using the same evaluation conditions, we analyzed the software implementation of the modified XTEA using FELICS (Fair Evaluation of Lightweight Cryptographic Systems) a benchmarking framework which calculates RAM footprint, ROM occupation and execution time on three largely used embedded devices: 8-bit AVR microcontroller, 16-bit MSP microcontroller and 32-bit ARM microcontroller. Implementation results show that it provides less software requirements compared to original XTEA. We enhanced the security level and the software performance.
In this paper we analyse possibilities of application of post-quantum code based signature schemes for message authentication purposes. An error-correcting code based digital signature algorithm is presented. There also shown results of computer simulation for this algorithm in case of Reed-Solomon codes and the estimated efficiency of its software implementation. We consider perspectives of error-correcting codes for message authentication and outline further research directions.