Biblio
In Particle Swarm Optimization Algorithm (PSO), the learning factors \$c\_1\$ and \$c\_2\$ are used to update the speed and location of a particle. However, the setting of those two important parameters has great effect on the performance of the PSO algorithm, which has limited its range of applications. To avoid the tedious parameter tuning, we introduce a transfer learning based adaptive parameter setting strategy to PSO in this paper. The proposed transfer learning strategy can adjust the two learning factors more effectively according to the environment change. The performance of the proposed algorithm is tested on sets of widely-used benchmark multi-objective test problems for DTLZ. The results comparing and analysis are conduced by comparing it with the state-of-art evolutionary multi-objective optimization algorithm NSGA-III to verify the effectiveness and efficiency of the proposed method.
Learning classifier systems (LCSs) are rule-based evolutionary algorithms uniquely suited to classification and data mining in complex, multi-factorial, and heterogeneous problems. LCS rule fitness is commonly based on accuracy, but this metric alone is not ideal for assessing global rule `value' in noisy problem domains, and thus impedes effective knowledge extraction. Multi-objective fitness functions are promising but rely on knowledge of how to weigh objective importance. Prior knowledge would be unavailable in most real-world problems. The Pareto-front concept offers a strategy for multi-objective machine learning that is agnostic to objective importance. We propose a Pareto-inspired multi-objective rule fitness (PIMORF) for LCS, and combine it with a complimentary rule-compaction approach (SRC). We implemented these strategies in ExSTraCS, a successful supervised LCS and evaluated performance over an array of complex simulated noisy and clean problems (i.e. genetic and multiplexer) that each concurrently model pure interaction effects and heterogeneity. While evaluation over multiple performance metrics yielded mixed results, this work represents an important first step towards efficiently learning complex problem spaces without the advantage of prior problem knowledge. Overall the results suggest that PIMORF paired with SRC improved rule set interpretability, particularly with regard to heterogeneous patterns.
Existing methods for multi-objective optimization usually provide only an approximation of a Pareto front, and there is little theoretical guarantee of finding the real Pareto front. This paper is concerned with the possibility of fully determining the true Pareto front for those continuous multi-objective optimization problems for which there are a finite number of local optima in terms of each single objective function and there is an effective method to find all such local optima. To this end, some generalized theoretical conditions are firstly given to guarantee a complete cover of the actual Pareto front for both discrete and continuous problems. Then based on such conditions, an effective search procedure inspired by the rising sea level phenomenon is proposed particularly for continuous problems of the concerned class. Even for general continuous problems to which not all local optima are available, the new method may still work well to approximate the true Pareto front. The good practicability of the proposed method is especially underpinned by multi-optima evolutionary algorithms. The advantages of the proposed method in terms of both solution quality and computational efficiency are illustrated by the simulation results.