Visible to the public Biblio

Filters: Keyword is transformer  [Clear All Filters]
2022-12-09
Feng, Li, Bo, Ye.  2022.  Intelligent fault diagnosis technology of power transformer based on Artificial Intelligence. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1968—1971.
Transformer is the key equipment of power system, and its stable operation is very important to the security of power system In practical application, with the progress of technology, the performance of transformer becomes more and more important, but faults also occur from time to time in practical application, and the traditional manual fault diagnosis needs to consume a lot of time and energy. At present, the rapid development of artificial intelligence technology provides a new research direction for timely and accurate detection and treatment of transformer faults. In this paper, a method of transformer fault diagnosis using artificial neural network is proposed. The neural network algorithm is used for off-line learning and training of the operation state data of normal and fault states. By adjusting the relationship between neuron nodes, the mapping relationship between fault characteristics and fault location is established by using network layer learning, Finally, the reasoning process from fault feature to fault location is realized to realize intelligent fault diagnosis.
2022-02-04
Cao, Wenbin, Qi, Xuanwei, Wang, Song, Chen, Ming, Yin, Xianggen, Wen, Minghao.  2021.  The Engineering Practical Calculation Method of Circulating Current in YD-connected Transformer. 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE). :1–5.
The circulating current in the D-winding may cause primary current waveform distortion, and the reliability of the restraint criterion based on the typical magnetizing inrush current characteristics will be affected. The magnetizing inrush current with typical characteristics is the sum of primary current and circulating current. Using the circulating current to compensate the primary current can improve the reliability of the differential protection. When the phase is not saturated, the magnetizing inrush current is about zero. Therefore, the primary current of unsaturated phase can be replaced by the opposite of the circulating current. Based on this, an engineering practical calculation method for circulating current is proposed. In the method, the segmented primary currents are used to replace the circulating current. Phasor analysis is used to demonstrate the application effect of this method when remanence coefficients are different. The method is simple and practical, and has strong applicability and high reliability. Simulation and recorded waveforms have verified the effectiveness of the method.
2020-11-30
Gerdroodbari, Y. Z., Davarpanah, M., Farhangi, S..  2018.  Remanent Flux Negative Effects on Transformer Diagnostic Test Results and a Novel Approach for Its Elimination. IEEE Transactions on Power Delivery. 33:2938–2945.
Influence of remanent flux on hysteresis curve of the transformer core is addressed in this paper. In addition, its significant negative effect on transformer diagnostic tests is quantified based on experimental studies. Furthermore, a novel approach is proposed to efficiently and quickly eliminate the remanent flux. This approach is evaluated based on simulation studies on a 230/63-kV power transformer. Meanwhile, experimental studies are performed on both 0.2/0.2 and 20/0.4 kV transformers. These studies reveal that the approach not only is well able to eliminate the remanent flux, but also it has various advantages over the commonly used method. In addition, this approach is equally applicable for various power, distribution, and instrument transformer types.
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Design of Distribution Devices for Smart Grid Based on Magnetically Tunable Nanocomposite. IEEE Transactions on Power Electronics. 33:2083–2099.
This paper designs three distribution devices for the smart grid, which are, respectively, novel transformer with dc bias restraining ability, energy-saving contactor, and controllable reactor with adjustable intrinsic magnetic state based on the magnetically tunable nanocomposite material core. First, the magnetic performance of this magnetic material was analyzed and the magnetic properties processing method was put forward. One kind of nanocomposite which is close to the semihard magnetic state with low coercivity and high remanence was attained. Nanocomposite with four magnetic properties was processed and prepared using the distribution devices design. Second, in order to adjust the magnetic state better, the magnetization and demagnetization control circuit based on the single-phase supply power of rectification and inverter for the nanocomposite magnetic performance adjustment has been designed, which can mutual transform the material's soft and hard magnetic phases. Finally, based on the nanocomposite and the control circuit, a novel power transformer, an energy-saving contactor, and a magnetically controllable reactor were manufactured for the smart grid. The maintained remanence of the nanocomposite core after the magnetization could neutralize the dc bias magnetic flux in the transformer main core without changing the transformer neutral point connection mode, could pull in the contactor movable core instead of the traditional electromagnetic-type fixed core, and could adjust the reactor core saturation degree instead of the traditional electromagnetic coil. The simulation and experimental results verify the correctness of the design, which provides reliable, intelligent, interactive, and energy-saving power equipment for the smart power grids safe operation.
2017-12-04
Chen, Zhiwei, Bai, Baodong, Chen, DeZhi, Chai, Wenping.  2016.  Design of distribution devices for smart grid based on nanocomposite magnetic material. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). :3546–3553.

This paper design three distribution devices for the strong and smart grid, respectively are novel transformer with function of dc bias restraining, energy-saving contactor and controllable reactor with adjustable intrinsic magnetic state based on nanocomposite magnetic material core. The magnetic performance of this material was analyzed and the relationship between the remanence and coercivity was determined. The magnetization and demagnetization circuit for the nanocomposite core has been designed based on three-phase rectification circuit combined with a capacitor charging circuit. The remanence of the nanocomposite core can neutralize the dc bias flux occurred in transformer main core, can pull in the movable core of the contactor instead of the traditional fixed core and adjust the saturation degree of the reactor core. The electromagnetic design of the three distribution devices was conducted and the simulation, experiment results verify correctness of the design which provides intelligent and energy-saving power equipment for the smart power grids safe operation.