Visible to the public Biblio

Filters: Keyword is magnetic permeability  [Clear All Filters]
2018-05-16
Liren, Z., Xin, Y., Yang, P., Li, Z..  2017.  Magnetic performance measurement and mathematical model establishment of main core of magnetic modulator. 2017 13th IEEE International Conference on Electronic Measurement Instruments (ICEMI). :12–16.

In order to investigate the relationship and effect on the performance of magnetic modulator among applied DC current, excitation source, excitation loop current, sensitivity and induced voltage of detecting winding, this paper measured initial permeability, maximum permeability, saturation magnetic induction intensity, remanent magnetic induction intensity, coercivity, saturated magnetic field intensity, magnetization curve, permeability curve and hysteresis loop of main core 1J85 permalloy of magnetic modulator based on ballistic method. On this foundation, employ curve fitting tool of MATLAB; adopt multiple regression method to comprehensively compare and analyze the sum of squares due to error (SSE), coefficient of determination (R-square), degree-of-freedom adjusted coefficient of determination (Adjusted R-square), and root mean squared error (RMSE) of fitting results. Finally, establish B-H curve mathematical model based on the sum of arc-hyperbolic sine function and polynomial.

2017-12-04
Ferraris, L., Franchini, F., Pošković, E..  2016.  Hybrid magnetic composite (HMC) materials for sensor applications. 2016 IEEE Sensors Applications Symposium (SAS). :1–6.

Several applications adopt electromagnetic sensors, that base their principle on the presence of magnets realized with specific magnetic materials that show a rather high remanence, but low coercivity. This work concerns the production, analysis and characterization of hybrid composite materials, with the use of metal powders, which aim to reach those specific properties. In order to obtain the best coercivity and remanence characteristics various "recipes" have been used with different percentages of soft and hard magnetic materials, bonded together by a plastic binder. The goal was to find out the interdependence between the magnetic powder composition and the characteristics of the final material. Soft magnetic material (special Fe powder) has been used to obtain a low coercivity value, while hard materials were primarily used for maintaining a good induction remanence; by increasing the soft proportion a higher magnetic permeability has been also obtained. All the selected materials have been characterized and then tested; in order to verify the validity of the proposed materials two practical tests have been performed. Special magnets have been realized for a comparison with original ones (AlNiCo and ferrite) for two experimental cases: the first is consisting in an encoder realized through a toothed wheel, the second regards the special system used for the electric guitars.