Visible to the public Biblio

Filters: Keyword is attack efficiency  [Clear All Filters]
2020-09-04
Jing, Huiyun, Meng, Chengrui, He, Xin, Wei, Wei.  2019.  Black Box Explanation Guided Decision-Based Adversarial Attacks. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1592—1596.
Adversarial attacks have been the hot research field in artificial intelligence security. Decision-based black-box adversarial attacks are much more appropriate in the real-world scenarios, where only the final decisions of the targeted deep neural networks are accessible. However, since there is no available guidance for searching the imperceptive adversarial perturbation, boundary attack, one of the best performing decision-based black-box attacks, carries out computationally expensive search. For improving attack efficiency, we propose a novel black box explanation guided decision-based black-box adversarial attack. Firstly, the problem of decision-based adversarial attacks is modeled as a derivative-free and constraint optimization problem. To solve this optimization problem, the black box explanation guided constrained random search method is proposed to more quickly find the imperceptible adversarial example. The insights into the targeted deep neural networks explored by the black box explanation are fully used to accelerate the computationally expensive random search. Experimental results demonstrate that our proposed attack improves the attack efficiency by 64% compared with boundary attack.
2020-05-15
Reinbrecht, Cezar, Forlin, Bruno, Zankl, Andreas, Sepulveda, Johanna.  2018.  Earthquake — A NoC-based optimized differential cache-collision attack for MPSoCs. 2018 Design, Automation Test in Europe Conference Exhibition (DATE). :648—653.
Multi-Processor Systems-on-Chips (MPSoCs) are a platform for a wide variety of applications and use-cases. The high on-chip connectivity, the programming flexibility, and the reuse of IPs, however, also introduce security concerns. Problems arise when applications with different trust and protection levels share resources of the MPSoC, such as processing units, cache memories and the Network-on-Chip (NoC) communication structure. If a program gets compromised, an adversary can observe the use of these resources and infer (potentially secret) information from other applications. In this work, we explore the cache-based attack by Bogdanov et al., which infers the cache activity of a target program through timing measurements and exploits collisions that occur when the same cache location is accessed for different program inputs. We implement this differential cache-collision attack on the MPSoC Glass and introduce an optimized variant of it, the Earthquake Attack, which leverages the NoC-based communication to increase attack efficiency. Our results show that Earthquake performs well under different cache line and MPSoC configurations, illustrating that cache-collision attacks are considerable threats on MPSoCs.
2017-12-04
Fraunholz, D., Zimmermann, M., Anton, S. D., Schneider, J., Schotten, H. Dieter.  2017.  Distributed and highly-scalable WAN network attack sensing and sophisticated analysing framework based on Honeypot technology. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :416–421.

Recently, the increase of interconnectivity has led to a rising amount of IoT enabled devices in botnets. Such botnets are currently used for large scale DDoS attacks. To keep track with these malicious activities, Honeypots have proven to be a vital tool. We developed and set up a distributed and highly-scalable WAN Honeypot with an attached backend infrastructure for sophisticated processing of the gathered data. For the processed data to be understandable we designed a graphical frontend that displays all relevant information that has been obtained from the data. We group attacks originating in a short period of time in one source as sessions. This enriches the data and enables a more in-depth analysis. We produced common statistics like usernames, passwords, username/password combinations, password lengths, originating country and more. From the information gathered, we were able to identify common dictionaries used for brute-force login attacks and other more sophisticated statistics like login attempts per session and attack efficiency.