Visible to the public Biblio

Filters: Keyword is Rats  [Clear All Filters]
2023-02-13
Wu, Yueming, Zou, Deqing, Dou, Shihan, Yang, Wei, Xu, Duo, Jin, Hai.  2022.  VulCNN: An Image-inspired Scalable Vulnerability Detection System. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :2365—2376.
Since deep learning (DL) can automatically learn features from source code, it has been widely used to detect source code vulnerability. To achieve scalable vulnerability scanning, some prior studies intend to process the source code directly by treating them as text. To achieve accurate vulnerability detection, other approaches consider distilling the program semantics into graph representations and using them to detect vulnerability. In practice, text-based techniques are scalable but not accurate due to the lack of program semantics. Graph-based methods are accurate but not scalable since graph analysis is typically time-consuming. In this paper, we aim to achieve both scalability and accuracy on scanning large-scale source code vulnerabilities. Inspired by existing DL-based image classification which has the ability to analyze millions of images accurately, we prefer to use these techniques to accomplish our purpose. Specifically, we propose a novel idea that can efficiently convert the source code of a function into an image while preserving the program details. We implement Vul-CNN and evaluate it on a dataset of 13,687 vulnerable functions and 26,970 non-vulnerable functions. Experimental results report that VulCNN can achieve better accuracy than eight state-of-the-art vul-nerability detectors (i.e., Checkmarx, FlawFinder, RATS, TokenCNN, VulDeePecker, SySeVR, VulDeeLocator, and Devign). As for scalability, VulCNN is about four times faster than VulDeePecker and SySeVR, about 15 times faster than VulDeeLocator, and about six times faster than Devign. Furthermore, we conduct a case study on more than 25 million lines of code and the result indicates that VulCNN can detect large-scale vulnerability. Through the scanning reports, we finally discover 73 vulnerabilities that are not reported in NVD.
2022-06-09
Ude, Okechukwu, Swar, Bobby.  2021.  Securing Remote Access Networks Using Malware Detection Tools for Industrial Control Systems. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). :166–171.
With their role as an integral part of its infrastructure, Industrial Control Systems (ICS) are a vital part of every nation's industrial development drive. Despite several significant advancements - such as controlled-environment agriculture, automated train systems, and smart homes, achieved in critical infrastructure sectors through the integration of Information Systems (IS) and remote capabilities with ICS, the fact remains that these advancements have introduced vulnerabilities that were previously either nonexistent or negligible, one being Remote Access Trojans (RATs). Present RAT detection methods either focus on monitoring network traffic or studying event logs on host systems. This research's objective is the detection of RATs by comparing actual utilized system capacity to reported utilized system capacity. To achieve the research objective, open-source RAT detection methods were identified and analyzed, a GAP-analysis approach was used to identify the deficiencies of each method, after which control algorithms were developed into source code for the solution.
2021-06-24
Maneebang, Kotchakorn, Methapatara, Kanokpol, Kudtongngam, Jasada.  2020.  A Demand Side Management Solution: Fully Automated Demand Response using OpenADR2.0b Coordinating with BEMS Pilot Project. 2020 International Conference on Smart Grids and Energy Systems (SGES). :30–35.
Per the National Energy Policy, Demand Side Management (DSM) is one of the energy conservations that performs a function to manage electric power of demand-side resources. One of the DSM solutions is a demand response program, which is a part of Thailand Smart Grid Action Plan 2017 - 2021. Demand response program such as peak demand reduction plays a role in both the management of the electricity crisis and enhance energy security. This paper presents a pilot project for a fully automated demand response program at MEA Rat Burana District Office. The system is composed of a Building Energy Management System (BEMS) with Demand Response Client gateway and 5 energy controllers at the air conditioner by using the OpenADR2.0b protocol. Also, this concept leads to automatic or semi-automatic demand response program in the future. The result shows the total energy consumption reduction for air conditioners by 53.5%. The future works to be carried out are to implement into other MEA District Office such as Khlong Toei, Yan Nawa and Bang Khun Thian and to test with a Load Aggregator Management System (LAMS).
2017-12-04
Farinholt, B., Rezaeirad, M., Pearce, P., Dharmdasani, H., Yin, H., Blond, S. L., McCoy, D., Levchenko, K..  2017.  To Catch a Ratter: Monitoring the Behavior of Amateur DarkComet RAT Operators in the Wild. 2017 IEEE Symposium on Security and Privacy (SP). :770–787.

Remote Access Trojans (RATs) give remote attackers interactive control over a compromised machine. Unlike large-scale malware such as botnets, a RAT is controlled individually by a human operator interacting with the compromised machine remotely. The versatility of RATs makes them attractive to actors of all levels of sophistication: they've been used for espionage, information theft, voyeurism and extortion. Despite their increasing use, there are still major gaps in our understanding of RATs and their operators, including motives, intentions, procedures, and weak points where defenses might be most effective. In this work we study the use of DarkComet, a popular commercial RAT. We collected 19,109 samples of DarkComet malware found in the wild, and in the course of two, several-week-long experiments, ran as many samples as possible in our honeypot environment. By monitoring a sample's behavior in our system, we are able to reconstruct the sequence of operator actions, giving us a unique view into operator behavior. We report on the results of 2,747 interactive sessions captured in the course of the experiment. During these sessions operators frequently attempted to interact with victims via remote desktop, to capture video, audio, and keystrokes, and to exfiltrate files and credentials. To our knowledge, we are the first large-scale systematic study of RAT use.