Visible to the public Biblio

Filters: Keyword is industrial network  [Clear All Filters]
2021-03-30
Kuchar, K., Fujdiak, R., Blazek, P., Martinasek, Z., Holasova, E..  2020.  Simplified Method for Fast and Efficient Incident Detection in Industrial Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1—3.

This article is focused on industrial networks and their security. An industrial network typically works with older devices that do not provide security at the level of today's requirements. Even protocols often do not support security at a sufficient level. It is necessary to deal with these security issues due to digitization. It is therefore required to provide other techniques that will help with security. For this reason, it is possible to deploy additional elements that will provide additional security and ensure the monitoring of the network, such as the Intrusion Detection System. These systems recognize identified signatures and anomalies. Methods of detecting security incidents by detecting anomalies in network traffic are described. The proposed methods are focused on detecting DoS attacks in the industrial Modbus protocol and operations performed outside the standard interval in the Distributed Network Protocol 3. The functionality of the performed methods is tested in the IDS system Zeek.

2020-04-03
Zhao, Hui, Li, Zhihui, Wei, Hansheng, Shi, Jianqi, Huang, Yanhong.  2019.  SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspective. 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). :59—67.

Industrial networks are the cornerstone of modern industrial control systems. Performing security checks of industrial communication processes helps detect unknown risks and vulnerabilities. Fuzz testing is a widely used method for performing security checks that takes advantage of automation. However, there is a big challenge to carry out security checks on industrial network due to the increasing variety and complexity of industrial communication protocols. In this case, existing approaches usually take a long time to model the protocol for generating test cases, which is labor-intensive and time-consuming. This becomes even worse when the target protocol is stateful. To help in addressing this problem, we employed a deep learning model to learn the structures of protocol frames and deal with the temporal features of stateful protocols. We propose a fuzzing framework named SeqFuzzer which automatically learns the protocol frame structures from communication traffic and generates fake but plausible messages as test cases. For proving the usability of our approach, we applied SeqFuzzer to widely-used Ethernet for Control Automation Technology (EtherCAT) devices and successfully detected several security vulnerabilities.

2020-03-23
Kern, Alexander, Anderl, Reiner.  2019.  Securing Industrial Remote Maintenance Sessions using Software-Defined Networking. 2019 Sixth International Conference on Software Defined Systems (SDS). :72–79.
Many modern business models of the manufacturing industry use the possibilities of digitization. In particular, the idea of connecting machines to networks and communication infrastructure is gaining momentum. However, in addition to the considerable economic advantages, this development also brings decisive disadvantages. By connecting previously encapsulated industrial networks with untrustworthy external networks such as the Internet, machines and systems are suddenly exposed to the same threats as conventional IT systems. A key problem today is the typical network paradigm with static routers and switches that cannot meet the dynamic requirements of a modern industrial network. Current security solutions often only threat symptoms instead of tackling the cause. In this paper we will therefore analyze the weaknesses of current networks and security solutions using the example of industrial remote maintenance. We will then present a novel concept of how Software-Defined Networking (SDN) in combination with a policy framework that supports attribute-based access control can be used to meet current and future security requirements in dynamic industrial networks. Furthermore, we will introduce an examplary implementation of this novel security framework for the use case of industrial remote maintenance and evaluate the solution. Our results show that SDN in combination with an Attribute-based Access Control (ABAC) policy framework is perfectly suited to increase flexibility and security of modern industrial networks at the same time.
2017-12-04
Thayananthan, V., Abdulkader, O., Jambi, K., Bamahdi, A. M..  2017.  Analysis of Cybersecurity Based on Li-Fi in Green Data Storage Environments. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :327–332.

Industrial networking has many issues based on the type of industries, data storage, data centers, and cloud computing, etc. Green data storage improves the scientific, commercial and industrial profile of the networking. Future industries are looking for cybersecurity solution with the low-cost resources in which the energy serving is the main problem in the industrial networking. To improve these problems, green data storage will be the priority because data centers and cloud computing deals with the data storage. In this analysis, we have decided to use solar energy source and different light rays as methodologies include a prism and the Li-Fi techniques. In this approach, light rays sent through the prism which allows us to transmit the data with different frequencies. This approach provides green energy and maximum protection within the data center. As a result, we have illustrated that cloud services within the green data center in industrial networking will achieve better protection with the low-cost energy through this analysis. Finally, we have to conclude that Li-Fi enhances the use of green energy and protection which are advantages to current and future industrial networking.