Visible to the public Biblio

Filters: Keyword is query answering  [Clear All Filters]
2020-05-22
Abdelhadi, Ameer M.S., Bouganis, Christos-Savvas, Constantinides, George A..  2019.  Accelerated Approximate Nearest Neighbors Search Through Hierarchical Product Quantization. 2019 International Conference on Field-Programmable Technology (ICFPT). :90—98.
A fundamental recurring task in many machine learning applications is the search for the Nearest Neighbor in high dimensional metric spaces. Towards answering queries in large scale problems, state-of-the-art methods employ Approximate Nearest Neighbors (ANN) search, a search that returns the nearest neighbor with high probability, as well as techniques that compress the dataset. Product-Quantization (PQ) based ANN search methods have demonstrated state-of-the-art performance in several problems, including classification, regression and information retrieval. The dataset is encoded into a Cartesian product of multiple low-dimensional codebooks, enabling faster search and higher compression. Being intrinsically parallel, PQ-based ANN search approaches are amendable for hardware acceleration. This paper proposes a novel Hierarchical PQ (HPQ) based ANN search method as well as an FPGA-tailored architecture for its implementation that outperforms current state of the art systems. HPQ gradually refines the search space, reducing the number of data compares and enabling a pipelined search. The mapping of the architecture on a Stratix 10 FPGA device demonstrates over ×250 speedups over current state-of-the-art systems, opening the space for addressing larger datasets and/or improving the query times of current systems.
2018-04-02
Lin, W., Wang, K., Zhang, Z., Chen, H..  2017.  Revisiting Security Risks of Asymmetric Scalar Product Preserving Encryption and Its Variants. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1116–1125.

Cloud computing has emerged as a compelling vision for managing data and delivering query answering capability over the internet. This new way of computing also poses a real risk of disclosing confidential information to the cloud. Searchable encryption addresses this issue by allowing the cloud to compute the answer to a query based on the cipher texts of data and queries. Thanks to its inner product preservation property, the asymmetric scalar-product-preserving encryption (ASPE) has been adopted and enhanced in a growing number of works toperform a variety of queries and tasks in the cloud computingsetting. However, the security property of ASPE and its enhancedschemes has not been studied carefully. In this paper, we show acomplete disclosure of ASPE and several previously unknownsecurity risks of its enhanced schemes. Meanwhile, efficientalgorithms are proposed to learn the plaintext of data and queriesencrypted by these schemes with little or no knowledge beyondthe ciphertexts. We demonstrate these risks on real data sets.

2017-12-12
Ktob, A., Li, Z..  2017.  The Arabic Knowledge Graph: Opportunities and Challenges. 2017 IEEE 11th International Conference on Semantic Computing (ICSC). :48–52.

Semantic Web has brought forth the idea of computing with knowledge, hence, attributing the ability of thinking to machines. Knowledge Graphs represent a major advancement in the construction of the Web of Data where machines are context-aware when answering users' queries. The English Knowledge Graph was a milestone realized by Google in 2012. Even though it is a useful source of information for English users and applications, it does not offer much for the Arabic users and applications. In this paper, we investigated the different challenges and opportunities prone to the life-cycle of the construction of the Arabic Knowledge Graph (AKG) while following some best practices and techniques. Additionally, this work suggests some potential solutions to these challenges. The proprietary factor of data creates a major problem in the way of harvesting this latter. Moreover, when the Arabic data is openly available, it is generally in an unstructured form which requires further processing. The complexity of the Arabic language itself creates a further problem for any automatic or semi-automatic extraction processes. Therefore, the usage of NLP techniques is a feasible solution. Some preliminary results are presented later in this paper. The AKG has very promising outcomes for the Semantic Web in general and the Arabic community in particular. The goal of the Arabic Knowledge Graph is mainly the integration of the different isolated datasets available on the Web. Later, it can be used in both the academic (by providing a large dataset for many different research fields and enhance discovery) and commercial sectors (by improving search engines, providing metadata, interlinking businesses).