Biblio
Congestion diffusion resulting from the coupling by resource competing is a kind of typical failure propagation in network systems. The existing models of failure propagation mainly focused on the coupling by direct physical connection between nodes, the most efficiency path, or dependence group, while the coupling by resource competing is ignored. In this paper, a model of network congestion diffusion with resource competing is proposed. With the analysis of the similarities to resource competing in biomolecular network, the model describing the dynamic changing process of biomolecule concentration based on titration mechanism provides reference for our model. Then the innovation on titration mechanism is proposed to describe the dynamic changing process of link load in networks, and a novel congestion model is proposed. By this model, the global congestion can be evaluated. Simulations show that network congestion with resource competing can be obtained from our model.
Quantum Key Distribution (QKD) is a technique for sharing encryption keys between two adjacent nodes. It provides unconditional secure communication based on the laws of physics. From the viewpoint of network research, QKD is considered to be a component for providing secure communication in network systems. A QKD network enables each node to exchange encryption keys with arbitrary nodes. However previous research did not focus on the processing speed of the key management method essential for a QKD network. This paper focuses on the key management method assuming a high-speed QKD system for which we clarify the design, propose a high-speed method, and evaluate the throughput. The proposed method consists of four modules: (1) local key manager handling the keys generated by QKD, (2) one-time pad tunnel manager establishing the transparent encryption link, (3) global key manager generating the keys for application communication, and (4) web API providing keys to the application. The proposed method was implemented in software and evaluated by emulating QKD key generation and application key consumption. The evaluation result reveals that it is capable of handling the encryption keys at a speed of 414 Mb/s, 185 Mb/s, 85 Mb/s and 971 Mb/s, for local key manager, one-time pad tunnel manager, global key manager and web API, respectively. These are sufficient for integration with a high-speed QKD system. Furthermore, the method allows the high-speed QKD system consisting of two nodes to expand corresponding to the size of the QKD network without losing the speed advantage.
Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.
Early detection of new kinds of malware always plays an important role in defending the network systems. Especially, if intelligent protection systems could themselves detect an existence of new malware types in their system, even with a very small number of malware samples, it must be a huge benefit for the organization as well as the social since it help preventing the spreading of that kind of malware. To deal with learning from few samples, term ``one-shot learning'' or ``fewshot learning'' was introduced, and mostly used in computer vision to recognize images, handwriting, etc. An approach introduced in this paper takes advantage of One-shot learning algorithms in solving the malware classification problem by using Memory Augmented Neural Network in combination with malware's API calls sequence, which is a very valuable source of information for identifying malware behavior. In addition, it also use some advantages of the development in Natural Language Processing field such as word2vec, etc. to convert those API sequences to numeric vectors before feeding to the one-shot learning network. The results confirm very good accuracies compared to the other traditional methods.
The continuous advance in recent cloud-based computer networks has generated a number of security challenges associated with intrusions in network systems. With the exponential increase in the volume of network traffic data, involvement of humans in such detection systems is time consuming and a non-trivial problem. Secondly, network traffic data tends to be highly dimensional, comprising of numerous features and attributes, making classification challenging and thus susceptible to the curse of dimensionality problem. Given such scenarios, the need arises for dimensional reduction, feature selection, combined with machine-learning techniques in the classification of such data. Therefore, as a contribution, this paper seeks to employ data mining techniques in a cloud-based environment, by selecting appropriate attributes and features with the least importance in terms of weight for the classification. Often the standard is to select features with better weights while ignoring those with least weights. In this study, we seek to find out if we can make prediction using those features with least weights. The motivation is that adversaries use stealth to hide their activities from the obvious. The question then is, can we predict any stealth activity of an adversary using the least observed attributes? In this particular study, we employ information gain to select attributes with the lowest weights and then apply machine learning to classify if a combination, in this case, of both source and destination ports are attacked or not. The motivation of this investigation is if attributes that are of least importance can be used to predict if an attack could occur. Our preliminary results show that even when the source and destination port attributes are used in combination with features with the least weights, it is possible to classify such network traffic data and predict if an attack will occur or not.
Network systems, such as transportation systems and water supply systems, play important roles in our daily life and industrial production. However, a variety of disruptive events occur during their life time, causing a series of serious losses. Due to the inevitability of disruption, we should not only focus on improving the reliability or the resistance of the system, but also pay attention to the ability of the system to response timely and recover rapidly from disruptive events. That is to say we need to pay more attention to the resilience. In this paper, we describe two resilience models, quotient resilience and integral resilience, to measure the final recovered performance and the performance cumulative process during recovery respectively. Based on these two models, we implement the optimization of the system recovery strategies after disruption, focusing on the repair sequence of the damaged components and the allocation scheme of resource. The proposed research in this paper can serve as guidance to prioritize repair tasks and allocate resource reasonably.