Visible to the public Biblio

Filters: Keyword is Crisis Management  [Clear All Filters]
2022-03-23
Yaning, Guo, Qianwen, Wang.  2021.  Analysis of Collaborative Co-Governance Path of Public Crisis Emergency Management in An All-Media Environment: —Theoretical Research Based on Multi-Agent. 2021 International Conference on Management Science and Software Engineering (ICMSSE). :235–238.
Multi-Agent system has the advantages of information sharing, knowledge accumulation and system stability, which is consistent with the concept of collaborative co-governance of public crisis management, and provides support for dealing with sudden public crises. Based on the background of the all-media environment, this study introduces the Internet-driven mass data management (“ crowdsourcing” crisis management) as a part of the crisis response system to improve the quality of information resource sharing. Crowdsourcing crisis management and Multi-Agent collaborative co-governance mechanism are combined with each other, so as to achieve a higher level of joint prevention and control mechanism, and explore how to effectively share information resources and emergency management resources across regions and departments in public crisis events.
2019-03-28
Varga, S., Brynielsson, J., Franke, U..  2018.  Information Requirements for National Level Cyber Situational Awareness. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :774-781.

As modern societies become more dependent on IT services, the potential impact both of adversarial cyberattacks and non-adversarial service management mistakes grows. This calls for better cyber situational awareness-decision-makers need to know what is going on. The main focus of this paper is to examine the information elements that need to be collected and included in a common operational picture in order for stakeholders to acquire cyber situational awareness. This problem is addressed through a survey conducted among the participants of a national information assurance exercise conducted in Sweden. Most participants were government officials and employees of commercial companies that operate critical infrastructure. The results give insight into information elements that are perceived as useful, that can be contributed to and required from other organizations, which roles and stakeholders would benefit from certain information, and how the organizations work with creating cyber common operational pictures today. Among findings, it is noteworthy that adversarial behavior is not perceived as interesting, and that the respondents in general focus solely on their own organization.

2019-01-16
Desnitsky, V. A., Kotenko, I. V..  2018.  Security event analysis in XBee-based wireless mesh networks. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :42–44.
In modern cyber-physical systems and wireless sensor networks the complexity of crisis management processes is caused by a variety of software/hardware assets and communication protocols, the necessity of their collaborative function, possible inconsistency of data flows between particular devices and increased requirements to cyber-physical security. A crisis management oriented model of a communicational mobile network is constructed. A general architecture of network nodes by the use of XBee circuits, Arduino microcontrollers and connecting equipment are developed. An analysis of possible cyber-physical security events on the base of existing intruder models is performed. A series of experiments on modeling attacks on network nodes is conducted. Possible ways for attack revelations by means of components for security event collection and data correlation is discussed.
2017-12-12
Hariri, S., Tunc, C., Badr, Y..  2017.  Resilient Dynamic Data Driven Application Systems as a Service (rDaaS): A Design Overview. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :352–356.

To overcome the current cybersecurity challenges of protecting our cyberspace and applications, we present an innovative cloud-based architecture to offer resilient Dynamic Data Driven Application Systems (DDDAS) as a cloud service that we refer to as resilient DDDAS as a Service (rDaaS). This architecture integrates Service Oriented Architecture (SOA) and DDDAS paradigms to offer the next generation of resilient and agile DDDAS-based cyber applications, particularly convenient for critical applications such as Battle and Crisis Management applications. Using the cloud infrastructure to offer resilient DDDAS routines and applications, large scale DDDAS applications can be developed by users from anywhere and by using any device (mobile or stationary) with the Internet connectivity. The rDaaS provides transformative capabilities to achieve superior situation awareness (i.e., assessment, visualization, and understanding), mission planning and execution, and resilient operations.