Biblio
This paper addresses the issue of magnetic resonance (MR) Image reconstruction at compressive sampling (or compressed sensing) paradigm followed by its segmentation. To improve image reconstruction problem at low measurement space, weighted linear prediction and random noise injection at unobserved space are done first, followed by spatial domain de-noising through adaptive recursive filtering. Reconstructed image, however, suffers from imprecise and/or missing edges, boundaries, lines, curvatures etc. and residual noise. Curvelet transform is purposely used for removal of noise and edge enhancement through hard thresholding and suppression of approximate sub-bands, respectively. Finally Genetic algorithms (GAs) based clustering is done for segmentation of sharpen MR Image using weighted contribution of variance and entropy values. Extensive simulation results are shown to highlight performance improvement of both image reconstruction and segmentation problems.
The main focus of this work is the estimation of a complex valued signal assumed to have a sparse representation in an uncountable dictionary of signals. The dictionary elements are parameterized by a real-valued vector and the available observations are corrupted with an additive noise. By applying a linearization technique, the original model is recast as a constrained sparse perturbed model. The problem of the computation of the involved multiple parameters is addressed from a nonconvex optimization viewpoint. A cost function is defined including an arbitrary Lipschitz differentiable data fidelity term accounting for the noise statistics, and an ℓ0-like penalty. A proximal algorithm is then employed to solve the resulting nonconvex and nonsmooth minimization problem. Experimental results illustrate the good practical performance of the proposed approach when applied to 2D spectrum analysis.