Biblio
The longstanding debate on a fundamental science of security has led to advances in systems, software, and network security. However, existing efforts have done little to inform how an environment should react to emerging and ongoing threats and compromises. The authors explore the goals and structures of a new science of cyber-decision-making in the Cyber-Security Collaborative Research Alliance, which seeks to develop a fundamental theory for reasoning under uncertainty the best possible action in a given cyber environment. They also explore the needs and limitations of detection mechanisms; agile systems; and the users, adversaries, and defenders that use and exploit them, and conclude by considering how environmental security can be cast as a continuous optimization problem.
Modern military forces are enabled by networked command and control systems, which provide an important interface between the cyber environment, electronic sensors and decision makers. However these systems are vulnerable to cyber attack. A successful cyber attack could compromise data within the system, leading to incorrect information being utilized for decisions with potentially catastrophic results on the battlefield. Degrading the utility of a system or the trust a decision maker has in their virtual display may not be the most effective means of employing offensive cyber effects. The coordination of cyber and kinetic effects is proposed as the optimal strategy for neutralizing an adversary's C4ISR advantage. However, such an approach is an opportunity cost and resource intensive. The adversary's cyber dependence can be leveraged as a means of gaining tactical and operational advantage in combat, if a military force is sufficiently trained and prepared to attack the entire information network. This paper proposes a research approach intended to broaden the understanding of the relationship between command and control systems and the human decision maker, as an interface for both cyber and kinetic deception activity.
The longstanding debate on a fundamental science of security has led to advances in systems, software, and network security. However, existing efforts have done little to inform how an environment should react to emerging and ongoing threats and compromises. The authors explore the goals and structures of a new science of cyber-decision-making in the Cyber-Security Collaborative Research Alliance, which seeks to develop a fundamental theory for reasoning under uncertainty the best possible action in a given cyber environment. They also explore the needs and limitations of detection mechanisms; agile systems; and the users, adversaries, and defenders that use and exploit them, and conclude by considering how environmental security can be cast as a continuous optimization problem.