Visible to the public Biblio

Filters: Keyword is Extreme Scientific Workflows project  [Clear All Filters]
2017-12-12
Stephan, E., Raju, B., Elsethagen, T., Pouchard, L., Gamboa, C..  2017.  A scientific data provenance harvester for distributed applications. 2017 New York Scientific Data Summit (NYSDS). :1–9.

Data provenance provides a way for scientists to observe how experimental data originates, conveys process history, and explains influential factors such as experimental rationale and associated environmental factors from system metrics measured at runtime. The US Department of Energy Office of Science Integrated end-to-end Performance Prediction and Diagnosis for Extreme Scientific Workflows (IPPD) project has developed a provenance harvester that is capable of collecting observations from file based evidence typically produced by distributed applications. To achieve this, file based evidence is extracted and transformed into an intermediate data format inspired in part by W3C CSV on the Web recommendations, called the Harvester Provenance Application Interface (HAPI) syntax. This syntax provides a general means to pre-stage provenance into messages that are both human readable and capable of being written to a provenance store, Provenance Environment (ProvEn). HAPI is being applied to harvest provenance from climate ensemble runs for Accelerated Climate Modeling for Energy (ACME) project funded under the U.S. Department of Energy's Office of Biological and Environmental Research (BER) Earth System Modeling (ESM) program. ACME informally provides provenance in a native form through configuration files, directory structures, and log files that contain success/failure indicators, code traces, and performance measurements. Because of its generic format, HAPI is also being applied to harvest tabular job management provenance from Belle II DIRAC scheduler relational database tables as well as other scientific applications that log provenance related information.