Visible to the public Biblio

Filters: Keyword is W3C  [Clear All Filters]
2023-08-17
Song, Zhiming, Yu, Yimin.  2022.  The Digital Identity Management System Model Based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :131—137.
Digital identity management system is the securi-ty infrastructure of computer and internet applications. However, currently, most of the digital identity management systems are faced with problems such as the difficulty of cross-domain authentication and interoperation, the lack of credibility of identity authentication, the weakness of the security of identity data. Although the advantages of block-chain technology have attached the attentions of experts and scholars in the field of digital identity management and many digital identity management systems based on block-chain have been built, the systems still can't completely solve the problems mentioned above. Therefore, in this pa-per, an effective digital identity management system model is proposed which combines technologies of self-sovereign identity and oracle with blockchain so as to pave a way in solving the problems mentioned above and constructing a secure and reliable digital identity management system.
2022-12-20
Do, Quoc Huy, Hosseyni, Pedram, Küsters, Ralf, Schmitz, Guido, Wenzler, Nils, Würtele, Tim.  2022.  A Formal Security Analysis of the W3C Web Payment APIs: Attacks and Verification. 2022 IEEE Symposium on Security and Privacy (SP). :215–234.
Payment is an essential part of e-commerce. Merchants usually rely on third-parties, so-called payment processors, who take care of transferring the payment from the customer to the merchant. How a payment processor interacts with the customer and the merchant varies a lot. Each payment processor typically invents its own protocol that has to be integrated into the merchant’s application and provides the user with a new, potentially unknown and confusing user experience.Pushed by major companies, including Apple, Google, Master-card, and Visa, the W3C is currently developing a new set of standards to unify the online checkout process and “streamline the user’s payment experience”. The main idea is to integrate payment as a native functionality into web browsers, referred to as the Web Payment APIs. While this new checkout process will indeed be simple and convenient from an end-user perspective, the technical realization requires rather significant changes to browsers.Many major browsers, such as Chrome, Firefox, Edge, Safari, and Opera, already implement these new standards, and many payment processors, such as Google Pay, Apple Pay, or Stripe, support the use of Web Payment APIs for payments. The ecosystem is constantly growing, meaning that the Web Payment APIs will likely be used by millions of people worldwide.So far, there has been no in-depth security analysis of these new standards. In this paper, we present the first such analysis of the Web Payment APIs standards, a rigorous formal analysis. It is based on the Web Infrastructure Model (WIM), the most comprehensive model of the web infrastructure to date, which, among others, we extend to integrate the new payment functionality into the generic browser model.Our analysis reveals two new critical vulnerabilities that allow a malicious merchant to over-charge an unsuspecting customer. We have verified our attacks using the Chrome implementation and reported these problems to the W3C as well as the Chrome developers, who have acknowledged these problems. Moreover, we propose fixes to the standard, which by now have been adopted by the W3C and Chrome, and prove that the fixed Web Payment APIs indeed satisfy strong security properties.
ISSN: 2375-1207
2022-02-25
Wilms, Daniel, Stoecker, Carsten, Caballero, Juan.  2021.  Data Provenance in Vehicle Data Chains. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). :1–5.
With almost every new vehicle being connected, the importance of vehicle data is growing rapidly. Many mobility applications rely on the fusion of data coming from heterogeneous data sources, like vehicle and "smart-city" data or process data generated by systems out of their control. This external data determines much about the behaviour of the relying applications: it impacts the reliability, security and overall quality of the application's input data and ultimately of the application itself. Hence, knowledge about the provenance of that data is a critical component in any data-driven system. The secure traceability of the data handling along the entire processing chain, which passes through various distinct systems, is critical for the detection and avoidance of misuse and manipulation. In this paper, we introduce a mechanism for establishing secure data provenance in real time, demonstrating an exemplary use-case based on a machine learning model that detects dangerous driving situations. We show with our approach based on W3C decentralized identity standards that data provenance in closed data systems can be effectively achieved using technical standards designed for an open data approach.
2021-05-20
Olejnik, Lukasz.  2020.  Shedding light on web privacy impact assessment: A case study of the Ambient Light Sensor API. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :310—313.

As modern web browsers gain new and increasingly powerful features the importance of impact assessments of the new functionality becomes crucial. A web privacy impact assessment of a planned web browser feature, the Ambient Light Sensor API, indicated risks arising from the exposure of overly precise information about the lighting conditions in the user environment. The analysis led to the demonstration of direct risks of leaks of user data, such as the list of visited websites or exfiltration of sensitive content across distinct browser contexts. Our work contributed to the creation of web standards leading to decisions by browser vendors (i.e. obsolescence, non-implementation or modification to the operation of browser features). We highlight the need to consider broad risks when making reviews of new features. We offer practically-driven high-level observations lying on the intersection of web security and privacy risk engineering and modeling, and standardization. We structure our work as a case study from activities spanning over three years.

2017-12-12
Jiang, L., Kuhn, W., Yue, P..  2017.  An interoperable approach for Sensor Web provenance. 2017 6th International Conference on Agro-Geoinformatics. :1–6.

The Sensor Web is evolving into a complex information space, where large volumes of sensor observation data are often consumed by complex applications. Provenance has become an important issue in the Sensor Web, since it allows applications to answer “what”, “when”, “where”, “who”, “why”, and “how” queries related to observations and consumption processes, which helps determine the usability and reliability of data products. This paper investigates characteristics and requirements of provenance in the Sensor Web and proposes an interoperable approach to building a provenance model for the Sensor Web. Our provenance model extends the W3C PROV Data Model with Sensor Web domain vocabularies. It is developed using Semantic Web technologies and thus allows provenance information of sensor observations to be exposed in the Web of Data using the Linked Data approach. A use case illustrates the applicability of the approach.