Biblio
Filters: Keyword is Online Games [Clear All Filters]
XAI-Driven Explainable Multi-view Game Cheating Detection. 2020 IEEE Conference on Games (CoG). :144–151.
.
2020. Online gaming is one of the most successful applications having a large number of players interacting in an online persistent virtual world through the Internet. However, some cheating players gain improper advantages over normal players by using illegal automated plugins which has brought huge harm to game health and player enjoyment. Game industries have been devoting much efforts on cheating detection with multiview data sources and achieved great accuracy improvements by applying artificial intelligence (AI) techniques. However, generating explanations for cheating detection from multiple views still remains a challenging task. To respond to the different purposes of explainability in AI models from different audience profiles, we propose the EMGCD, the first explainable multi-view game cheating detection framework driven by explainable AI (XAI). It combines cheating explainers to cheating classifiers from different views to generate individual, local and global explanations which contributes to the evidence generation, reason generation, model debugging and model compression. The EMGCD has been implemented and deployed in multiple game productions in NetEase Games, achieving remarkable and trustworthy performance. Our framework can also easily generalize to other types of related tasks in online games, such as explainable recommender systems, explainable churn prediction, etc.
Detecting Covert Channels in FPS Online Games. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :555–558.
.
2017. Encryption is often not sufficient to secure communication, since it does not hide that communication takes place or who is communicating with whom. Covert channels hide the very existence of communication enabling individuals to communicate secretly. Previous work proposed a covert channel hidden inside multi-player first person shooter online game traffic (FPSCC). FPSCC has a low bit rate, but it is practically impossible to eliminate other than by blocking the overt game trac. This paper shows that with knowledge of the channel’s encoding and using machine learning techniques, FPSCC can be detected with an accuracy of 95% or higher.