Visible to the public Biblio

Filters: Keyword is Security Goal  [Clear All Filters]
2018-02-02
Wu, Y., Lyu, Y., Fang, Q., Zheng, G., Yin, H., Shi, Y..  2017.  Protecting Outsourced Data in Semi-Trustworthy Cloud: A Hierarchical System. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :300–305.

Data outsourcing in cloud is emerging as a successful paradigm that benefits organizations and enterprises with high-performance, low-cost, scalable data storage and sharing services. However, this paradigm also brings forth new challenges for data confidentiality because the outsourced are not under the physic control of the data owners. The existing schemes to achieve the security and usability goal usually apply encryption to the data before outsourcing them to the storage service providers (SSP), and disclose the decryption keys only to authorized user. They cannot ensure the security of data while operating data in cloud where the third-party services are usually semi-trustworthy, and need lots of time to deal with the data. We construct a privacy data management system appending hierarchical access control called HAC-DMS, which can not only assure security but also save plenty of time when updating data in cloud.

2015-04-30
Nigam, Varsha, Jain, Saurabh, Burse, Kavita.  2014.  Profile Based Scheme Against DDoS Attack in WSN. Proceedings of the 2014 Fourth International Conference on Communication Systems and Network Technologies. :112–116.

Wireless Sensor networks (WSN) is an promising technology and have enormous prospective to be working in critical situations like battlefields and commercial applications such as traffic surveillance, building, habitat monitoring and smart homes and many more scenarios. One of the major challenges in wireless sensor networks face today is security. In this paper we proposed a profile based protection scheme (PPS security scheme against DDoS (Distributed Denial of Service) attack. This king of attacks are flooding access amount of unnecessary packets in network by that the network bandwidth are consumed by that data delivery in network are affected. Our main aim is visualized the effect of DDoS attack in network and identify the node or nodes that are affected the network performance. The profile based security scheme are check the profile of each node in network and only the attacker is one of the node that flooded the unnecessary packets in network then PPS has block the performance of attacker. The performance of network is measured on the basis of performance metrics like routing load, throughput etc. The simulation results are represents the same performance in case of normal routing and in case of PPS scheme, it means that the PPS scheme is effective and showing 0% infection in presence of attacker.