Visible to the public Biblio

Filters: Keyword is secondary user  [Clear All Filters]
2020-04-10
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :197—202.
In this paper, a framework for capitalizing on the potential benefits of physical layer security in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN network the sensing data from secondary users (SUs) are collected by a fusion center (FC) with the help of access points (AP) as relays, and when malicious eavesdropping secondary users (SUs) are listening. We focus on the secure transmission of active SUs transmitting their sensing data to the AP. Closed expressions for the average secrecy rate are presented. Numerical results corroborate our analysis and show that multiple antennas at the APs can enhance the security of the AF-CSS-CRN. The obtained numerical results show that average secrecy rate between the AP and its correlated FC decreases when the number of AP is increased. Nevertheless, we find that an increase in the number of AP initially increases the overall average secrecy rate, with a perilous value at which the overall average secrecy rate then decreases. While increasing the number of active SUs, there is a decrease in the secrecy rate between the sensor and its correlated AP.
2017-12-20
Wang, Fei, Zhang, Xi.  2017.  Secure resource allocation for polarization-enabled green cooperative cognitive radio networks with untrusted secondary users. 2017 51st Annual Conference on Information Sciences and Systems (CISS). :1–6.
We address secure resource allocation for an OFDMA cooperative cognitive radio network (CRN) with energy harvesting (EH) capability. In the network, one primary user (PU) cooperates with several untrusted secondary users (SUs) with one SU transmitter and several SU receivers, where the SU transmitter and all SU receivers may overhear the PU transmitter's information while all SU receivers may eavesdrop on each other's signals. We consider the scenario when SUs are wireless devices with small physical sizes; therefore to improve system performance we suppose that SUs are equipped with co-located orthogonally dual-polarized antennas (ODPAs). With ODPAs, on one hand, the SU transmitter can first harvest energy from radio frequency (RF) signals emitted by the PU transmitter, and then utilize the harvested energy to simultaneously serve the PU and all SU receivers. On the other hand, by exploiting polarization-based signal processing techniques, both the PU's and SUs' physical-layer security can be enhanced. In particular, to ensure the PU's communication security, the PU receiver also sends jamming signals to degrade the reception performance of SUs, and meanwhile the jamming signals can also become new sources of energy powering the SU transmitter. For the considered scenario, we investigate the joint allocation of subcarriers, powers, and power splitting ratios to maximize the total secrecy rate of all SUs while ensuring the PU's minimum secrecy rate requirement. Finally, we evaluate the performance of our resource allocation scheme through numerical analyses.