Visible to the public Biblio

Filters: Keyword is untrusted secondary user  [Clear All Filters]
2019-12-05
Mu, Li, Mianquan, Li, Yuzhen, Huang, Hao, Yin, Yan, Wang, Baoquan, Ren, Xiaofei, Qu, Rui, Yu.  2018.  Security Analysis of Overlay Cognitive Wireless Networks with an Untrusted Secondary User. 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1-5.

In this article, we study the transmission secrecy performance of primary user in overlay cognitive wireless networks, in which an untrusted energy-limited secondary cooperative user assists the primary transmission to exchange for the spectrum resource. In the network, the information can be simultaneously transmitted through the direct and relay links. For the enhancement of primary transmission security, a maximum ratio combining (MRC) scheme is utilized by the receiver to exploit the two copies of source information. For the security analysis, we firstly derive the tight lower bound expression for secrecy outage probability (SOP). Then, three asymptotic expressions for SOP are also expressed to further analyze the impacts of the transmit power and the location of secondary cooperative node on the primary user information security. The findings show that the primary user information secrecy performance enhances with the improvement of transmit power. Moreover, the smaller the distance between the secondary node and the destination, the better the primary secrecy performance.

2017-12-20
Wang, Fei, Zhang, Xi.  2017.  Secure resource allocation for polarization-enabled green cooperative cognitive radio networks with untrusted secondary users. 2017 51st Annual Conference on Information Sciences and Systems (CISS). :1–6.
We address secure resource allocation for an OFDMA cooperative cognitive radio network (CRN) with energy harvesting (EH) capability. In the network, one primary user (PU) cooperates with several untrusted secondary users (SUs) with one SU transmitter and several SU receivers, where the SU transmitter and all SU receivers may overhear the PU transmitter's information while all SU receivers may eavesdrop on each other's signals. We consider the scenario when SUs are wireless devices with small physical sizes; therefore to improve system performance we suppose that SUs are equipped with co-located orthogonally dual-polarized antennas (ODPAs). With ODPAs, on one hand, the SU transmitter can first harvest energy from radio frequency (RF) signals emitted by the PU transmitter, and then utilize the harvested energy to simultaneously serve the PU and all SU receivers. On the other hand, by exploiting polarization-based signal processing techniques, both the PU's and SUs' physical-layer security can be enhanced. In particular, to ensure the PU's communication security, the PU receiver also sends jamming signals to degrade the reception performance of SUs, and meanwhile the jamming signals can also become new sources of energy powering the SU transmitter. For the considered scenario, we investigate the joint allocation of subcarriers, powers, and power splitting ratios to maximize the total secrecy rate of all SUs while ensuring the PU's minimum secrecy rate requirement. Finally, we evaluate the performance of our resource allocation scheme through numerical analyses.