Visible to the public Biblio

Filters: Keyword is Grammatical Inference  [Clear All Filters]
2018-07-06
Lampesberger, H..  2016.  An Incremental Learner for Language-Based Anomaly Detection in XML. 2016 IEEE Security and Privacy Workshops (SPW). :156–170.

The Extensible Markup Language (XML) is a complex language, and consequently, XML-based protocols are susceptible to entire classes of implicit and explicit security problems. Message formats in XML-based protocols are usually specified in XML Schema, and as a first-line defense, schema validation should reject malformed input. However, extension points in most protocol specifications break validation. Extension points are wildcards and considered best practice for loose composition, but they also enable an attacker to add unchecked content in a document, e.g., for a signature wrapping attack. This paper introduces datatyped XML visibly pushdown automata (dXVPAs) as language representation for mixed-content XML and presents an incremental learner that infers a dXVPA from example documents. The learner generalizes XML types and datatypes in terms of automaton states and transitions, and an inferred dXVPA converges to a good-enough approximation of the true language. The automaton is free from extension points and capable of stream validation, e.g., as an anomaly detector for XML-based protocols. For dealing with adversarial training data, two scenarios of poisoning are considered: a poisoning attack is either uncovered at a later time or remains hidden. Unlearning can therefore remove an identified poisoning attack from a dXVPA, and sanitization trims low-frequent states and transitions to get rid of hidden attacks. All algorithms have been evaluated in four scenarios, including a web service implemented in Apache Axis2 and Apache Rampart, where attacks have been simulated. In all scenarios, the learned automaton had zero false positives and outperformed traditional schema validation.

2017-12-20
Rubin, S. H., Grefe, W. K., Bouabana-Tebibel, T., Chen, S. C., Shyu, M. L., Simonsen, K. S..  2017.  Cyber-Secure UAV Communications Using Heuristically Inferred Stochastic Grammars and Hard Real-Time Adaptive Waveform Synthesis and Evolution. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :9–15.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar