Biblio
Driven by CA compromises and the risk of man-in-the-middle attacks, new security features have been added to TLS, HTTPS, and the web PKI over the past five years. These include Certificate Transparency (CT), for making the CA system auditable; HSTS and HPKP headers, to harden the HTTPS posture of a domain; the DNS-based extensions CAA and TLSA, for control over certificate issuance and pinning; and SCSV, for protocol downgrade protection. This paper presents the first large scale investigation of these improvements to the HTTPS ecosystem, explicitly accounting for their combined usage. In addition to collecting passive measurements at the Internet uplinks of large University networks on three continents, we perform the largest domain-based active Internet scan to date, covering 193M domains. Furthermore, we track the long-term deployment history of new TLS security features by leveraging passive observations dating back to 2012. We find that while deployment of new security features has picked up in general, only SCSV (49M domains) and CT (7M domains) have gained enough momentum to improve the overall security of HTTPS. Features with higher complexity, such as HPKP, are deployed scarcely and often incorrectly. Our empirical findings are placed in the context of risk, deployment effort, and benefit of these new technologies, and actionable steps for improvement are proposed. We cross-correlate use of features and find some techniques with significant correlation in deployment. We support reproducible research and publicly release data and code.
This article presents introduction to HTTP Security Headers - new security topic in communication over Internet. It is emphasized that HTTPS protocol and SSL/TLS certificates alone do not offer sufficient level of security for communication among people and devices. In the world of web applications and Internet of Things (IoT), it is vital to bring communication security at higher level, what could be realised via few simple steps. HTTP Response Headers used for different purposes in the past are now the effective way how to propagate security policies from servers to clients (from web servers to web browsers). First improvement is enforcing HTTPS protocol for communication everywhere it is possible and promote this protocol as first and only option for secure connection over the Internet. It is emphasized that HTTP protocol for communication is not suitable anymore.