Visible to the public Biblio

Found 154 results

Filters: Keyword is Adaptation models  [Clear All Filters]
2015-05-04
Yuying Wang, Xingshe Zhou.  2014.  Spatio-temporal semantic enhancements for event model of cyber-physical systems. Signal Processing, Communications and Computing (ICSPCC), 2014 IEEE International Conference on. :813-818.

The newly emerging cyber-physical systems (CPS) discover events from multiple, distributed sources with multiple levels of detail and heterogeneous data format, which may not be compare and integrate, and turn to hardly combined determination for action. While existing efforts have mainly focused on investigating a uniform CPS event representation with spatio-temporal attributes, in this paper we propose a new event model with two-layer structure, Basic Event Model (BEM) and Extended Information Set (EIS). A BEM could be extended with EIS by semantic adaptor for spatio-temporal and other attribution enhancement. In particular, we define the event process functions, like event attribution extraction and composition determination, for CPS action trigger exploit the Complex Event Process (CEP) engine Esper. Examples show that such event model provides several advantages in terms of extensibility, flexibility and heterogeneous support, and lay the foundations of event-based system design in CPS.
 

2015-05-01
Qingyi Chen, Hongwei Kang, Hua Zhou, Xingping Sun, Yong Shen, YunZhi Jin, Jun Yin.  2014.  Research on cloud computing complex adaptive agent. Service Systems and Service Management (ICSSSM), 2014 11th International Conference on. :1-4.

It has gradually realized in the industry that the increasing complexity of cloud computing under interaction of technology, business, society and the like, instead of being simply solved depending on research on information technology, shall be explained and researched from a systematic and scientific perspective on the basis of theory and method of a complex adaptive system (CAS). This article, for basic problems in CAS theoretical framework, makes research on definition of an active adaptive agent constituting the cloud computing system, and proposes a service agent concept and basic model through commonality abstraction from two basic levels: cloud computing technology and business, thus laying a foundation for further development of cloud computing complexity research as well as for multi-agent based cloud computing environment simulation.

2015-04-30
Jingtang Luo, Xiaolong Yang, Jin Wang, Jie Xu, Jian Sun, Keping Long.  2014.  On a Mathematical Model for Low-Rate Shrew DDoS. Information Forensics and Security, IEEE Transactions on. 9:1069-1083.

The shrew distributed denial of service (DDoS) attack is very detrimental for many applications, since it can throttle TCP flows to a small fraction of their ideal rate at very low attack cost. Earlier works mainly focused on empirical studies of defending against the shrew DDoS, and very few of them provided analytic results about the attack itself. In this paper, we propose a mathematical model for estimating attack effect of this stealthy type of DDoS. By originally capturing the adjustment behaviors of victim TCPs congestion window, our model can comprehensively evaluate the combined impact of attack pattern (i.e., how the attack is configured) and network environment on attack effect (the existing models failed to consider the impact of network environment). Henceforth, our model has higher accuracy over a wider range of network environments. The relative error of our model remains around 10% for most attack patterns and network environments, whereas the relative error of the benchmark model in previous works has a mean value of 69.57%, and it could be more than 180% in some cases. More importantly, our model reveals some novel properties of the shrew attack from the interaction between attack pattern and network environment, such as the minimum cost formula to launch a successful attack, and the maximum effect formula of a shrew attack. With them, we are able to find out how to adaptively tune the attack parameters (e.g., the DoS burst length) to improve its attack effect in a given network environment, and how to reconfigure the network resource (e.g., the bottleneck buffer size) to mitigate the shrew DDoS with a given attack pattern. Finally, based on our theoretical results, we put forward a simple strategy to defend the shrew attack. The simulation results indicate that this strategy can remarkably increase TCP throughput by nearly half of the bottleneck bandwidth (and can be higher) for general attack patterns.

Cepheli, O., Buyukcorak, S., Kurt, G.K..  2014.  User behaviour modelling based DDoS attack detection. Signal Processing and Communications Applications Conference (SIU), 2014 22nd. :2186-2189.

Distributed Denial of Service (DDoS) attacks are one of the most important threads in network systems. Due to the distributed nature, DDoS attacks are very hard to detect, while they also have the destructive potential of classical denial of service attacks. In this study, a novel 2-step system is proposed for the detection of DDoS attacks. In the first step an anomaly detection is performed on the destination IP traffic. If an anomaly is detected on the network, the system proceeds into the second step where a decision on every user is made due to the behaviour models. Hence, it is possible to detect attacks in the network that diverges from users' behavior model.