Liu, Hongbo, Wang, Yan, Ren, Yanzhi, Chen, Yingying.
2021.
Bipartite Graph Matching Based Secret Key Generation. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1—10.
The physical layer secret key generation exploiting wireless channel reciprocity has attracted considerable attention in the past two decades. On-going research have demonstrated its viability in various radio frequency (RF) systems. Most of existing work rely on quantization technique to convert channel measurements into digital binaries that are suitable for secret key generation. However, non-simultaneous packet exchanges in time division duplex systems and noise effects in practice usually create random channel measurements between two users, leading to inconsistent quantization results and mismatched secret bits. While significant efforts were spent in recent research to mitigate such non-reciprocity, no efficient method has been found yet. Unlike existing quantization-based approaches, we take a different viewpoint and perform the secret key agreement by solving a bipartite graph matching problem. Specifically, an efficient dual-permutation secret key generation method, DP-SKG, is developed to match the randomly permuted channel measurements between a pair of users by minimizing their discrepancy holistically. DP-SKG allows two users to generate the same secret key based on the permutation order of channel measurements despite the non-reciprocity over wireless channels. Extensive experimental results show that DP-SKG could achieve error-free key agreement on received signal strength (RSS) with a low cost under various scenarios.
Kuang, Randy, Barbeau, Michel.
2021.
Performance Analysis of the Quantum Safe Multivariate Polynomial Public Key Algorithm. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). :351—358.
The Multivariate Polynomial Public Key (MPPK) algorithm, over a prime Galois field, takes a multiplier multivariate polynomial and two multiplicand univariate solvable polynomials to create two product multivariate polynomials. One of variables is for secret message and all others are for noises. The public key consists of all coefficients of the product multivariate polynomials, except the two constant terms for the message variable. The private key is made of both multiplicands. Encryption takes a list of random numbers, over the prime Galois field. The first number is the secret to exchange. The other random numbers generate noise automatically cancelled by decryption. The secret is easily extracted from the evaluation of a solvable equation. The level of security provided by MPPK is adaptable. The algorithm can be used in several different ways. In this paper, we review the performance achieved by MPPK for several combinations of polynomial configurations and Galois field sizes. For every combination, we calculated key generation time, encryption time and decryption time. We also compare the effectiveness of MPPK with the performance of all four NIST PQC finalists. For MPPK, the data has been collected from the execution of an implementation in Java. In comparison to the NIST PQC finalists, MPPK key generation, encryption and decryption performance is excellent.
Pagán, Alexander, Elleithy, Khaled.
2021.
A Multi-Layered Defense Approach to Safeguard Against Ransomware. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0942–0947.
There has been a significant rise in ransomware attacks over the last few years. Cyber attackers have made use of tried and true ransomware viruses to target the government, health care, and educational institutions. Ransomware variants can be purchased on the dark web by amateurs giving them the same attack tools used by professional cyber attackers without experience or skill. Traditional antivirus and antimalware products have improved, but they alone fall short when it comes to catching and stopping ransomware attacks. Employee training has become one of the most important aspects of being prepared for attempted cyberattacks. However, training alone only goes so far; human error is still the main entry point for malware and ransomware infections. In this paper, we propose a multi-layered defense approach to safeguard against ransomware. We have come to the startling realization that it is not a matter of “if” your organization will be hit with ransomware, but “when” your organization will be hit with ransomware. If an organization is not adequately prepared for an attack or how to respond to an attack, the effects can be costly and devastating. Our approach proposes having innovative antimalware software on the local machines, properly configured firewalls, active DNS/Web filtering, email security, backups, and staff training. With the implementation of this layered defense, the attempt can be caught and stopped at multiple points in the event of an attempted ransomware attack. If the attack were successful, the layered defense provides the option for recovery of affected data without paying a ransom.
Zhuravchak, Danyil, Ustyianovych, Taras, Dudykevych, Valery, Venny, Bogdan, Ruda, Khrystyna.
2021.
Ransomware Prevention System Design based on File Symbolic Linking Honeypots. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:284–287.
The data-driven period produces more and more security-related challenges that even experts can hardly deal with. One of the most complex threats is ransomware, which is very taxing and devastating to detect and mainly prevent. Our research methods showed significant results in identifying ransomware processes using the honeypot concept augmented with symbolic linking to reduce damage made to the file system. The CIA (confidentiality, integrity, availability) metrics have been adhered to. We propose to optimize the malware process termination procedure and introduce an artificial intelligence-human collaboration to enhance ransomware classification and detection.
De, Rohit, Moberly, Raymond, Beery, Colton, Juybari, Jeremy, Sundqvist, Kyle.
2021.
Multi-Qubit Size-Hopping Deutsch-Jozsa Algorithm with Qubit Reordering for Secure Quantum Key Distribution. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). :473—474.
As a classic quantum computing implementation, the Deustch-Jozsa (DJ) algorithm is taught in many courses pertaining to quantum information science and technology (QIST). We exploit the DJ framework as an educational testbed, illustrating fundamental qubit concepts while identifying associated algorithmic challenges. In this work, we present a self-contained exploration which may be beneficial in educating the future quantum workforce. Quantum Key Distribution (QKD), an improvement over the classical Public Key Infrastructure (PKI), allows two parties, Alice and Bob, to share a secret key by using the quantum physical properties. For QKD the DJ-packets, consisting of the input qubits and the target qubit for the DJ algorithm, carry the secret information between Alice and Bob. Previous research from Nagata and Nakamura discovered in 2015 that the DJ algorithm for QKD allows an attacker to successfully intercept and remain undetected. Improving upon the past research we increased the entropy of DJ-packets through: (i) size hopping (H), where the number of qubits in consecutive DJ-packets keeps on changing and (ii) reordering (R) the qubits within the DJ-packets. These concepts together illustrate the multiple scales where entropy may increase in a DJ algorithm to make for a more robust QKD framework, and therefore significantly decrease Eve’s chance of success. The proof of concept of the new schemes is tested on Google’s Cirq quantum simulator, and detailed python simulations show that attacker’s interception success rate can be drastically reduced.