Biblio
Filters: Keyword is encryption system [Clear All Filters]
Dynamic Iris-Based Key Generation Scheme during Iris Authentication Process. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :364–368.
.
2022. The robustness of the encryption systems in all of their types depends on the key generation. Thus, an encryption system can be said robust if the generated key(s) are very complex and random which prevent attackers or other analytical tools to break the encryption system. This paper proposed an enhanced key generation based on iris image as biometric, to be implemented dynamically in both of authentication process and data encryption. The captured iris image during the authentication process will be stored in a cloud server to be used in the next login to decrypt data. While in the current login, the previously stored iris image in the cloud server would be used to decrypt data in the current session. The results showed that the generated key meets the required randomness for several NIST tests that is reasonable for one use. The strength of the proposed approach produced unrepeated keys for encryption and each key will be used once. The weakness of the produced key may be enhanced to become more random.
AuthentiCAN: a Protocol for Improved Security over CAN. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :533–538.
.
2020. The continuous progress of electronic equipments has influenced car manufacturers, leading to the integration of the latest infotainment technologies and providing connection to external devices, such as mobile phones. Modern cars work with ECUs (Electronic Control Units) that handle user interactions and sensor data, by also sending information to actuators using simple, reliable and efficient networks with fast protocols, like CAN (Controller Area Network). This is the most used vehicular protocol, which allows interconnecting different ECUs, making them interact in a synergic manner. On the down side, there is a security risk related to the exposition of malicious ECU's frames-possibly generated by compromised devices-which can lead to the possibility to remote control all the car equipments (like brakes and others) by an attacker. We propose a solution to this problem, designing an authentication and encryption system above CAN, called AuthentiCAN. Our proposal is tailored for the evolution of CAN called CAN-FD, and avoids the possibility for an attacker to inject malicious frames that are not discarded by the destination ECUs. Also, we avoid the possibility for an attacker to learn the interactions that occur across ECUs, with the objective of maliciously replaying messages-which would lead the actuator's logic to be no longer compliant with the actual data sources. We also present a simulation study of our solution, where we provide an assessment of its overhead, e.g. in terms of reduction of the throughput of data-unit transfer over CAN-FD, caused by the added security features.
Speech encryption based on the synchronization of fractional-order chaotic maps. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1–6.
.
2019. This work presents a new method of encrypting and decrypting speech based on a chaotic key generator. The proposed scheme takes advantage of the best features of chaotic systems. In the proposed method, the input speech signal is converted into an image which is ciphered by an encryption function using a chaotic key matrix generated from a fractional-order chaotic map. Based on a deadbeat observer, the exact synchronization of system used is established, and the decryption is performed. Different analysis are applied for analyzing the effectiveness of the encryption system. The obtained results confirm that the proposed system offers a higher level of security against various attacks and holds a strong key generation mechanism for satisfactory speech communication.
IoT Securing System Using Fuzzy Commitment for DCT-Based Fingerprint Recognition. 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS). :1-5.
.
2018. Internet of Things refers to a paradigm consisting of a variety of uniquely identifiable day to day things communicating with one another to form a large scale dynamic network. Securing access to this network is a current challenging issue. This paper proposes an encryption system suitable to IoT features. In this system we integrated the fuzzy commitment scheme in DCT-based recognition method for fingerprint. To demonstrate the efficiency of our scheme, the obtained results are analyzed and compared with direct matching (without encryption) according to the most used criteria; FAR and FRR.
Integrated methods of information security in telecommunication systems. 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). :1–4.
.
2017. The importance of the task of countering the means of unauthorized access is to preserve the integrity of restricted access information circulating in computer networks determines the relevance of investigating perspective methods of cryptographic transformations, which are characterized by high speed and reliability of encryption. The methods of information security in the telecommunication system were researched based on integration of encryption processes and noise-immune coding. The method for data encryption based on generic polynomials of cyclic codes, gamut of the dynamic chaos sequence, and timer coding was proposed. The expediency of using timer coding for increasing the cryptographic strength of the encryption system and compensating for the redundancy of the verification elements was substantiated. The method for cryptographic transformation of data based on the gamma sequence was developed, which is formed by combining numbers from different sources of dynamical chaos generators. The efficiency criterion was introduced for the integrated information transformation method.