Visible to the public Biblio

Filters: Keyword is GPS receivers  [Clear All Filters]
2020-07-03
Arif, Syed Waqas, Coskun, Adem, Kale, Izzet.  2019.  A Fully Adaptive Lattice-based Notch Filter for Mitigation of Interference in GPS. 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). :217—220.

Intentional interference presents a major threat to the operation of the Global Navigation Satellite Systems. Adaptive notch filtering provides an excellent countermeasure and deterrence against narrowband interference. This paper presents a comparative performance analysis of two adaptive notch filtering algorithms for GPS specific applications which are based on Direct form Second Order and Lattice-Based notch filter structures. Performance of each algorithm is evaluated considering the ratio of jamming to noise density against the effective signal to noise ratio at the output of the correlator. A fully adaptive lattice notch filter is proposed, which is able to simultaneously adapt its coefficients to alter the notch frequency along with the bandwidth of the notch filter. The filter demonstrated a superior tracking performance and convergence rate in comparison to an existing algorithm taken from the literature. Moreover, this paper describes the complete GPS modelling platform implemented in Simulink too.

2017-12-20
Viet, H. N., Kwon, K. R., Kwon, S. K., Lee, E. J., Lee, S. H., Kim, C. Y..  2017.  Implementation of GPS signal simulation for drone security using Matlab/Simulink. 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON). :1–4.
In this paper, a simulation model of digital intermediate frequency (IF) GPS signal is presented. This design is developed based on mathematical model representing the digitized IF GPS signal. In details, C/A code, navigation data and P code, and the noise models are configured some initial settings simultaneously. Simulation results show that the simulated signals share the same properties with real signals (e.g. C/A code correlation properties, and the spread spectrum). The simulated GPS IF signal data can work as input for various signal processing algorithm of GPS receivers, such as acquisition, tracking, carrier-to-noise ratio (C/No) estimation, and GPS spoofing signal generation. Particularly, the simulated GPS signal can conduct scenarios by adjust SNR values of the noise generator during simulation (e.g. signal outages, sudden changes of GPS signal power), which can be used as setup experiments of spoofing/jamming interference to UAVs for drone security applications.