Visible to the public Biblio

Filters: Keyword is phishing email  [Clear All Filters]
2020-04-10
Bagui, Sikha, Nandi, Debarghya, Bagui, Subhash, White, Robert Jamie.  2019.  Classifying Phishing Email Using Machine Learning and Deep Learning. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—2.

In this work, we applied deep semantic analysis, and machine learning and deep learning techniques, to capture inherent characteristics of email text, and classify emails as phishing or non -phishing.

2017-12-20
Che, H., Liu, Q., Zou, L., Yang, H., Zhou, D., Yu, F..  2017.  A Content-Based Phishing Email Detection Method. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :415–422.

Phishing emails have affected users seriously due to the enormous increasing in numbers and exquisite camouflage. Users spend much more effort on distinguishing the email properties, therefore current phishing email detection system demands more creativity and consideration in filtering for users. The proposed research tries to adopt creative computing in detecting phishing emails for users through a combination of computing techniques and social engineering concepts. In order to achieve the proposed target, the fraud type is summarised in social engineering criteria through literature review; a semantic web database is established to extract and store information; a fuzzy logic control algorithm is constructed to allocate email categories. The proposed approach will help users to distinguish the categories of emails, furthermore, to give advice based on different categories allocation. For the purpose of illustrating the approach, a case study will be presented to simulate a phishing email receiving scenario.