Visible to the public Biblio

Filters: Keyword is human detection  [Clear All Filters]
2022-04-25
Nguyen, Huy Hoang, Ta, Thi Nhung, Nguyen, Ngoc Cuong, Bui, Van Truong, Pham, Hung Manh, Nguyen, Duc Minh.  2021.  YOLO Based Real-Time Human Detection for Smart Video Surveillance at the Edge. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :439–444.
Recently, smart video surveillance at the edge has become a trend in developing security applications since edge computing enables more image processing tasks to be implemented on the decentralised network note of the surveillance system. As a result, many security applications such as behaviour recognition and prediction, employee safety, perimeter intrusion detection and vandalism deterrence can minimise their latency or even process in real-time when the camera network system is extended to a larger degree. Technically, human detection is a key step in the implementation of these applications. With the advantage of high detection rates, deep learning methods have been widely employed on edge devices in order to detect human objects. However, due to their high computation costs, it is challenging to apply these methods on resource limited edge devices for real-time applications. Inspired by the You Only Look Once (YOLO), residual learning and Spatial Pyramid Pooling (SPP), a novel form of real-time human detection is presented in this paper. Our approach focuses on designing a network structure so that the developed model can achieve a good trade-off between accuracy and processing time. Experimental results show that our trained model can process 2 FPS on Raspberry PI 3B and detect humans with accuracies of 95.05 % and 96.81 % when tested respectively on INRIA and PENN FUDAN datasets. On the human COCO test dataset, our trained model outperforms the performance of the Tiny-YOLO versions. Additionally, compare to the SSD based L-CNN method, our algorithm achieves better accuracy than the other method.
2020-07-03
Dinama, Dima Maharika, A’yun, Qurrota, Syahroni, Achmad Dahlan, Adji Sulistijono, Indra, Risnumawan, Anhar.  2019.  Human Detection and Tracking on Surveillance Video Footage Using Convolutional Neural Networks. 2019 International Electronics Symposium (IES). :534—538.

Safety is one of basic human needs so we need a security system that able to prevent crime happens. Commonly, we use surveillance video to watch environment and human behaviour in a location. However, the surveillance video can only used to record images or videos with no additional information. Therefore we need more advanced camera to get another additional information such as human position and movement. This research were able to extract those information from surveillance video footage by using human detection and tracking algorithm. The human detection framework is based on Deep Learning Convolutional Neural Networks which is a very popular branch of artificial intelligence. For tracking algorithms, channel and spatial correlation filter is used to track detected human. This system will generate and export tracked movement on footage as an additional information. This tracked movement can be analysed furthermore for another research on surveillance video problems.

2018-04-04
Gajjar, V., Khandhediya, Y., Gurnani, A..  2017.  Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). :2805–2809.

With crimes on the rise all around the world, video surveillance is becoming more important day by day. Due to the lack of human resources to monitor this increasing number of cameras manually, new computer vision algorithms to perform lower and higher level tasks are being developed. We have developed a new method incorporating the most acclaimed Histograms of Oriented Gradients, the theory of Visual Saliency and the saliency prediction model Deep Multi-Level Network to detect human beings in video sequences. Furthermore, we implemented the k - Means algorithm to cluster the HOG feature vectors of the positively detected windows and determined the path followed by a person in the video. We achieved a detection precision of 83.11% and a recall of 41.27%. We obtained these results 76.866 times faster than classification on normal images.

2017-12-20
Williams, N., Li, S..  2017.  Simulating Human Detection of Phishing Websites: An Investigation into the Applicability of the ACT-R Cognitive Behaviour Architecture Model. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

The prevalence and effectiveness of phishing attacks, despite the presence of a vast array of technical defences, are due largely to the fact that attackers are ruthlessly targeting what is often referred to as the weakest link in the system - the human. This paper reports the results of an investigation into how end users behave when faced with phishing websites and how this behaviour exposes them to attack. Specifically, the paper presents a proof of concept computer model for simulating human behaviour with respect to phishing website detection based on the ACT-R cognitive architecture, and draws conclusions as to the applicability of this architecture to human behaviour modelling within a phishing detection scenario. Following the development of a high-level conceptual model of the phishing website detection process, the study draws upon ACT-R to model and simulate the cognitive processes involved in judging the validity of a representative webpage based primarily around the characteristics of the HTTPS padlock security indicator. The study concludes that despite the low-level nature of the architecture and its very basic user interface support, ACT-R possesses strong capabilities which map well onto the phishing use case, and that further work to more fully represent the range of human security knowledge and behaviours in an ACT-R model could lead to improved insights into how best to combine technical and human defences to reduce the risk to end users from phishing attacks.