Visible to the public Biblio

Filters: Keyword is network threat  [Clear All Filters]
2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2020-06-29
Giri, Nupur, Jaisinghani, Rahul, Kriplani, Rohit, Ramrakhyani, Tarun, Bhatia, Vinay.  2019.  Distributed Denial Of Service(DDoS) Mitigation in Software Defined Network using Blockchain. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :673–678.
A DDoS attack is a spiteful attempt to disrupt legitimate traffic to a server by overwhelming the target with a flood of requests from geographically dispersed systems. Today attackers prefer DDoS attack methods to disrupt target services as they generate GBs to TBs of random data to flood the target. In existing mitigation strategies, because of lack of resources and not having the flexibility to cope with attacks by themselves, they are not considered to be that effective. So effective DDoS mitigation techniques can be provided using emerging technologies such as blockchain and SDN(Software-Defined Networking). We propose an architecture where a smart contract is deployed in a private blockchain, which facilitates a collaborative DDoS mitigation architecture across multiple network domains. Blockchain application is used as an additional security service. With Blockchain, shared protection is enabled among all hosts. With help of smart contracts, rules are distributed among all hosts. In addition, SDN can effectively enable services and security policies dynamically. This mechanism provides ASes(Autonomous Systems) the possibility to deploy their own DPS(DDoS Prevention Service) and there is no need to transfer control of the network to the third party. This paper focuses on the challenges of protecting a hybridized enterprise from the ravages of rapidly evolving Distributed Denial of Service(DDoS) attack.
2020-05-26
Wang, Kai, Zhao, Yude, liu, Shugang, Tong, Xiangrong.  2018.  On the urgency of implementing Interest NACK into CCN: from the perspective of countering advanced interest flooding attacks. IET Networks. 7:136–140.
Content centric networking (CCN) where content/named data as the first entity has become one of the most promising architectures for the future Internet. To achieve better security, the Interest NACK mechanism is introduced into CCN; however, it has not attracted enough attention and most of the CCN architectures do not embed Interest NACK until now. This study focuses on analysing the urgency of implementing Interest NACK into CCN, by designing a novel network threat named advanced interest flooding attack (AIFA) to attack CCN, which can not only exhaust the pending interest table (PIT) resource of each involved router just as normal interest flooding attack (IFA), but also keep each PIT entry unexpired until it finishes, making it harder to detect and more harmful when compared with the normal IFA. Specifically, the damage of AIFA on CCN architecture with and without Interest NACK is evaluated and analysed, compared with normal IFA, and then the urgency of implementing Interest NACK is highlighted.
2019-05-08
Meng, F., Lou, F., Fu, Y., Tian, Z..  2018.  Deep Learning Based Attribute Classification Insider Threat Detection for Data Security. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :576–581.

With the evolution of network threat, identifying threat from internal is getting more and more difficult. To detect malicious insiders, we move forward a step and propose a novel attribute classification insider threat detection method based on long short term memory recurrent neural networks (LSTM-RNNs). To achieve high detection rate, event aggregator, feature extractor, several attribute classifiers and anomaly calculator are seamlessly integrated into an end-to-end detection framework. Using the CERT insider threat dataset v6.2 and threat detection recall as our performance metric, experimental results validate that the proposed threat detection method greatly outperforms k-Nearest Neighbor, Isolation Forest, Support Vector Machine and Principal Component Analysis based threat detection methods.

2017-12-20
Chen, C. K., Lan, S. C., Shieh, S. W..  2017.  Shellcode detector for malicious document hunting. 2017 IEEE Conference on Dependable and Secure Computing. :527–528.

Advanced Persistent Threat (APT) attacks became a major network threat in recent years. Among APT attack techniques, sending a phishing email with malicious documents attached is considered one of the most effective ones. Although many users have the impression that documents are harmless, a malicious document may in fact contain shellcode to attack victims. To cope with the problem, we design and implement a malicious document detector called Forensor to differentiate malicious documents. Forensor integrates several open-source tools and methods. It first introspects file format to retrieve objects inside the documents, and then automatically decrypts simple encryption methods, e.g., XOR, rot and shift, commonly used in malware to discover potential shellcode. The emulator is used to verify the presence of shellcode. If shellcode is discovered, the file is considered malicious. The experiment used 9,000 benign files and more than 10,000 malware samples from a well-known sample sharing website. The result shows no false negative and only 2 false positives.