Visible to the public Biblio

Filters: Keyword is legitimate traffic  [Clear All Filters]
2019-02-13
Rashidi, B., Fung, C., Rahman, M..  2018.  A scalable and flexible DDoS mitigation system using network function virtualization. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Distributed Denial of Service (DDoS) attacks remain one of the top threats to enterprise networks and ISPs nowadays. It can cause tremendous damage by bringing down online websites or services. Existing DDoS defense solutions either brings high cost such as upgrading existing firewall or IPS, or bring excessive traffic delay by using third-party cloud-based DDoS filtering services. In this work, we propose a DDoS defense framework that utilizes Network Function Virtualization (NFV) architecture to provide low cost and highly flexible solutions for enterprises. In particular, the system uses virtual network agents to perform attack traffic filtering before they are forwarded to the target server. Agents are created on demand to verify the authenticity of the source of packets, and drop spoofed packets in order protect the target server. Furthermore, we design a scalable and flexible dispatcher to forward packets to corresponding agents for processing. A bucket-based forwarding mechanism is used to improve the scalability of the dispatcher through batching forwarding. The dispatcher can also adapt to agent addition and removal. Our simulation results demonstrate that the dispatcher can effectively serve a large volume of traffic with low dropping rate. The system can successfully mitigate SYN flood attack by introducing minimal performance degradation to legitimate traffic.
2018-02-28
Hendriks, L., Velan, P., Schmidt, R. d O., Boer, P. T. de, Pras, A..  2017.  Threats and surprises behind IPv6 extension headers. 2017 Network Traffic Measurement and Analysis Conference (TMA). :1–9.

The concept of Extension Headers, newly introduced with IPv6, is elusive and enables new types of threats in the Internet. Simply dropping all traffic containing any Extension Header - a current practice by operators-seemingly is an effective solution, but at the cost of possibly dropping legitimate traffic as well. To determine whether threats indeed occur, and evaluate the actual nature of the traffic, measurement solutions need to be adapted. By implementing these specific parsing capabilities in flow exporters and performing measurements on two different production networks, we show it is feasible to quantify the metrics directly related to these threats, and thus allow for monitoring and detection. Analysing the traffic that is hidden behind Extension Headers, we find mostly benign traffic that directly affects end-user QoE: simply dropping all traffic containing Extension Headers is thus a bad practice with more consequences than operators might be aware of.

2015-04-30
Geva, M., Herzberg, A., Gev, Y..  2014.  Bandwidth Distributed Denial of Service: Attacks and Defenses. Security Privacy, IEEE. 12:54-61.

The Internet is vulnerable to bandwidth distributed denial-of-service (BW-DDoS) attacks, wherein many hosts send a huge number of packets to cause congestion and disrupt legitimate traffic. So far, BW-DDoS attacks have employed relatively crude, inefficient, brute force mechanisms; future attacks might be significantly more effective and harmful. To meet the increasing threats, we must deploy more advanced defenses.