Sun, Yanling, Chen, Ning, Jiang, Tianjiao.
2022.
Research on Image Encryption based on Generalized M-J Set. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :1165–1168.
With the rapid development of information technology, hacker invasion, Internet fraud and privacy disclosure and other events frequently occur, therefore information security issues become the focus of attention. Protecting the secure transmission of information has become a hot topic in today's research. As the carrier of information, image has the characteristics of vivid image and large amount of information. It has become an indispensable part of people's communication. In this paper, we proposed the key simulation analysis research based on M-J set. The research uses a complex iterative mapping to construct M set. On the basis of the constructed M set, the constructed Julia set is used to form the encryption key. The experimental results show that the generalized M-set has the characteristics of chaotic characteristic and initial value sensitivity, and the complex mapping greatly exaggerates the key space. The research on the key space based on the generalized M-J set is helpful to improve the effect of image encryption.
Senlin, Yan.
2022.
The Technology and System of Chaotic Laser AVSK Coding and Combined Coding for Optics Secure Communications. 2022 IEEE 10th International Conference on Information, Communication and Networks (ICICN). :212–216.
We present a novel chaotic laser coding technology of alternate variable secret-key (AVSK) for optics secure communication using alternate variable orbits (AVOs) method. We define the principle of chaotic AVSK encoding and decoding, and introduce a chaotic AVSK communication platform and its coding scheme. And then the chaotic AVSK coding technology be successfully achieved in encrypted optics communications while the presented AVO function, as AVSK, is adjusting real-time chaotic phase space trajectory, where the AVO function and AVSK according to our needs can be immediately variable and adjustable. The coding system characterizes AVSK of emitters. And another combined AVSK coding be discussed. So the system's security enhances obviously because it increases greatly the difficulty for intruders to decipher the information from the carrier. AVSK scheme has certain reference value for the research of chaotic laser secure communication and laser network synchronization.
Shaocheng, Wu, Hefang, Jiang, Sijian, Li, Tao, Liu.
2022.
Design of a chaotic sequence cipher algorithm. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :320–323.
To protect the security of video information use encryption technology to be effective means. In practical applications, the structural complexity and real-time characteristics of video information make the encryption effect of some commonly used algorithms have some shortcomings. According to the characteristics of video, to design practical encryption algorithm is necessary. This paper proposed a novel scheme of chaotic image encryption, which is based on scrambling and diffusion structure. Firstly, the breadth first search method is used to scramble the pixel position in the original image, and then the pseudo-random sequence generated by the time-varying bilateral chaotic symbol system is used to transform each pixel of the scrambled image ratio by ratio or encryption. In the simulation experiment and analysis, the performance of the encrypted image message entropy displays that the new chaotic image encryption scheme is effective.
Sahlabadi, Mahdi, Saberikamarposhti, Morteza, Muniyandi, Ravie Chandren, Shukur, Zarina.
2022.
Using Cycling 3D Chaotic Map and DNA Sequences for Introducing a Novel Algorithm for Color Image Encryption. 2022 International Conference on Cyber Resilience (ICCR). :1–7.
Today, social communication through the Internet has become more popular and has become a crucial part of our daily life. Naturally, sending and receiving various data through the Internet has also grown a lot. Keeping important data secure in transit has become a challenge for individuals and even organizations. Therefore, the trinity of confidentiality, integrity, and availability will be essential, and encryption will definitely be one of the best solutions to this problem. Of course, for image data, it will not be possible to use conventional encryption methods for various reasons, such as the redundancy of image data, the strong correlation of adj acent pixels, and the large volume of image data. Therefore, special methods were developed for image encryption. Among the prevalent methods for image encryption is the use of DNA sequences as well as chaos signals. In this paper, a cycling 3D chaotic map and DNA sequences are used to present a new method for color image encryption. Several experimental analyses were performed on the proposed method, and the results proved that the presented method is secure and efficient.
Debnath, Sristi, Kar, Nirmalya.
2022.
An Approach Towards Data Security Based on DCT and Chaotic Map. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–5.
Currently, the rapid development of digital communication and multimedia has made security an increasingly prominent issue of communicating, storing, and transmitting digital data such as images, audio, and video. Encryption techniques such as chaotic map based encryption can ensure high levels of security of data and have been used in many fields including medical science, military, and geographic satellite imagery. As a result, ensuring image data confidentiality, integrity, security, privacy, and authenticity while transferring and storing images over an unsecured network like the internet has become a high concern. There have been many encryption technologies proposed in recent years. This paper begins with a summary of cryptography and image encryption basics, followed by a discussion of different kinds of chaotic image encryption techniques and a literature review for each form of encryption. Finally, by examining the behaviour of numerous existing chaotic based image encryption algorithms, this paper hopes to build new chaotic based image encryption strategies in the future.
Deepa, N R, Sivamangai, N M.
2022.
A State-Of-Art Model of Encrypting Medical Image Using DNA Cryptography and Hybrid Chaos Map - 2d Zaslavaski Map: Review. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :190–195.
E-health, smart health and telemedicine are examples of sophisticated healthcare systems. For end-to-end communication, these systems rely on digital medical information. Although this digitizing saves much time, it is open source. As a result, hackers could potentially manipulate the digital medical image as it is being transmitted. It is harder to diagnose an actual disease from a modified digital medical image in medical diagnostics. As a result, ensuring the security and confidentiality of clinical images, as well as reducing the computing time of encryption algorithms, appear to be critical problems for research groups. Conventional approaches are insufficient to ensure high-level medical image security. So this review paper focuses on depicting advanced methods like DNA cryptography and Chaotic Map as advanced techniques that could potentially help in encrypting the digital image at an effective level. This review acknowledges the key accomplishments expressed in the encrypting measures and their success indicators of qualitative and quantitative measurement. This research study also explores the key findings and reasons for finding the lessons learned as a roadmap for impending findings.
Monani, Ravi, Rogers, Brian, Rezaei, Amin, Hedayatipour, Ava.
2022.
Implementation of Chaotic Encryption Architecture on FPGA for On-Chip Secure Communication. 2022 IEEE Green Energy and Smart System Systems (IGESSC). :1–6.
Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is 9% lesser than Chua’s.
ISSN: 2640-0138