Visible to the public Biblio

Filters: Keyword is Chebyshev approximation  [Clear All Filters]
2022-12-07
Ariturk, Gokhan, Almuqati, Nawaf R., Yu, Yao, Yen, Ernest Ting-Ta, Fruehling, Adam, Sigmarsson, Hjalti H..  2022.  Wideband Hybrid Acoustic-Electromagnetic Filters with Prescribed Chebyshev Functions. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022. :887—890.
The achievable bandwidth in ladder acoustic filters is strictly limited by the electromechanical coupling coefficient (k;) in conventional ladder-acoustic filters. Furthermore, their out-of-band rejection is inherently weak due to the frequency responses of the shunt or series-connected acoustic resonators. This work proposes a coupling-matrix-based solution for both issues by employing acoustic and electromagnetic resonators within the same filter prototype using prescribed Chebyshev responses. It has been shown that significantly much wider bandwidths, that cannot be achieved with acoustic-only filters, can be obtained. An important strength of the proposed method is that a filter with a particular FBW can be designed with a wide range of acoustic resonators with different k; values. An 14 % third-order asymmetrical-response filter is designed and fabricated using electromagnetic resonators and an acoustic resonator with a k; of 3.5 %.
2021-08-31
Yu, Wei, Zhou, Yuanyuan, Zhou, Xuejun, Wang, Lei, Chen, Shang.  2020.  Study on Statistical Analysis Method of Decoy-state Quantum Key Distribution with Finite-length Data. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:2435—2440.
In order to solve the statistical fluctuation problem caused by the finite data length in the practical quantum key distribution system, four commonly used statistical methods, DeMoivre-Laplace theorem, Chebyshev inequality, Chernoff boundary and Hoeffding boundary, are used to analyze. The application conditions of each method are discussed, and the effects of data length and confidence level on quantum key distribution security performance are simulated and analyzed. The simulation results show that the applicable conditions of Chernoff boundary are most consistent with the reality of the practical quantum key distribution system with finite-length data. Under the same experimental conditions, the secure key generation rate and secure transmission distance obtained by Chernoff boundary are better than those of the other three methods. When the data length and confidence level change, the stability of the security performance obtained by the Chernoff boundary is the best.
2021-01-22
Chen, P., Liu, X., Zhang, J., Yu, C., Pu, H., Yao, Y..  2019.  Improvement of PRIME Protocol Based on Chaotic Cryptography. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–5.

PRIME protocol is a narrowband power line communication protocol whose security is based on Advanced Encryption Standard. However, the key expansion process of AES algorithm is not unidirectional, and each round of keys are linearly related to each other, it is less difficult for eavesdroppers to crack AES encryption algorithm, leading to threats to the security of PRIME protocol. To solve this problem, this paper proposes an improvement of PRIME protocol based on chaotic cryptography. The core of this method is to use Chebyshev chaotic mapping and Logistic chaotic mapping to generate each round of key in the key expansion process of AES algorithm, In this way, the linear correlation between the key rounds can be reduced, making the key expansion process unidirectional, increasing the crack difficulty of AES encryption algorithm, and improving the security of PRIME protocol.

2020-09-08
Chen, Pengfei, Liu, Xiaosheng, Zhang, Jiarui, Yu, Chunjiao, Pu, Honghong, Yao, Yousu.  2019.  Improvement of PRIME Protocol Based on Chaotic Cryptography. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). :1–5.
PRIME protocol is a narrowband power line communication protocol whose security is based on Advanced Encryption Standard. However, the key expansion process of AES algorithm is not unidirectional, and each round of keys are linearly related to each other, it is less difficult for eavesdroppers to crack AES encryption algorithm, leading to threats to the security of PRIME protocol. To solve this problem, this paper proposes an improvement of PRIME protocol based on chaotic cryptography. The core of this method is to use Chebyshev chaotic mapping and Logistic chaotic mapping to generate each round of key in the key expansion process of AES algorithm, In this way, the linear correlation between the key rounds can be reduced, making the key expansion process unidirectional, increasing the crack difficulty of AES encryption algorithm, and improving the security of PRIME protocol.
2020-06-26
Ahmad, Jawad, Tahir, Ahsen, Khan, Jan Sher, Khan, Muazzam A, Khan, Fadia Ali, Arshad, Habib, Zeeshan.  2019.  A Partial Ligt-weight Image Encryption Scheme. 2019 UK/ China Emerging Technologies (UCET). :1—3.

Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.

2020-01-28
Calot, Enrique P., Ierache, Jorge S., Hasperué, Waldo.  2019.  Document Typist Identification by Classification Metrics Applying Keystroke Dynamics Under Unidealised Conditions. 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW). 8:19–24.

Keystroke Dynamics is the study of typing patterns and rhythm for personal identification and traits. Keystrokes may be analysed as fixed text such as passwords or as continuous typed text such as documents. This paper reviews different classification metrics for continuous text, such as the A and R metrics, Canberra, Manhattan and Euclidean and introduces a variant of the Minkowski distance. To test the metrics, we adopted a substantial dataset containing 239 thousand records acquired under real, harsh, and unidealised conditions. We propose a new parameter for the Minkowski metric, and we reinforce another for the A metric, as initially stated by its authors.

2017-12-27
Li, L., Abd-El-Atty, B., El-Latif, A. A. A., Ghoneim, A..  2017.  Quantum color image encryption based on multiple discrete chaotic systems. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :555–559.

In this paper, a novel quantum encryption algorithm for color image is proposed based on multiple discrete chaotic systems. The proposed quantum image encryption algorithm utilize the quantum controlled-NOT image generated by chaotic logistic map, asymmetric tent map and logistic Chebyshev map to control the XOR operation in the encryption process. Experiment results and analysis show that the proposed algorithm has high efficiency and security against differential and statistical attacks.

Caifen, W., Burong, K..  2016.  ID-Based Signcryption Scheme Using Extended Chaotic Maps. 2016 International Symposium on Computer, Consumer and Control (IS3C). :776–779.

Recently, the chaotic public-key cryptography attracts much attention of researchers, due to the great characters of chaotic maps. With the security superiorities and computation efficiencies of chaotic map over other cryptosystems, in this paper, a novel Identity-based signcryption scheme is proposed using extended chaotic maps. The difficulty of chaos-based discrete logarithm (CDL) problem lies the foundation of the security of proposed ECM-IBSC scheme.