Visible to the public Biblio

Filters: Keyword is information safety  [Clear All Filters]
2022-03-14
Zhao, Hua, Xu, Chunxiao, Zhou, Feifei.  2021.  Research on Embedded Startup Method of Trusted Module. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:953—957.
In order to meet the requirements of secure start-up of embedded devices, this paper designs a secure and trusted circuit to realize the secure and trusted start-up of the system. This paper analyzes the principle and method of the circuit design, and verifies the preset information of the embedded device before the start of the embedded device, so as to ensure that the start process of the embedded device is carried out according to the predetermined way, and then uses the security module to measure the integrity of the data in the start process, so as to realize a trusted embedded system. The experimental results show that the security module has stronger security features and low latency. The integrity measurement is implemented in the trusted embedded system to realize the safe startup of embedded devices.
2017-12-27
Wang, Y., Kang, S., Lan, C., Liang, Y., Zhu, J., Gao, H..  2016.  A five-dimensional chaotic system with a large parameter range and the circuit implementation of a time-switched system. 2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS). :1–6.

To enhance the encryption and anti-translation capability of the information, we constructed a five-dimensional chaotic system. Combined with the Lü system, a time-switched system with multiple chaotic attractors is realized in the form of a digital circuit. Some characteristics of the five-dimensional system are analyzed, such as Poincare mapping, the Lyapunov exponent spectrum, and bifurcation diagram. The analysis shows that the system exhibits chaotic characteristics for a wide range of parameter values. We constructed a time-switched expression between multiple chaotic attractors using the communication between a microcontroller unit (MCU) and field programmable gate array (FPGA). The system can quickly switch between different chaotic attractors within the chaotic system and between chaotic systems at any time, leading to signal sources with more variability, diversity, and complexity for chaotic encryption.