Visible to the public Biblio

Filters: Keyword is Chosen-plaintext attack  [Clear All Filters]
2020-08-10
Luo, Yuling, Ouyang, Xue, Liu, Junxiu, Cao, Lvchen.  2019.  An Image Encryption Method Based on Elliptic Curve Elgamal Encryption and Chaotic Systems. IEEE Access. 7:38507–38522.
Due to the potential security problem about key management and distribution for the symmetric image encryption schemes, a novel asymmetric image encryption method is proposed in this paper, which is based on the elliptic curve ElGamal (EC-ElGamal) cryptography and chaotic theory. Specifically, the SHA-512 hash is first adopted to generate the initial values of a chaotic system, and a crossover permutation in terms of chaotic index sequence is used to scramble the plain-image. Furthermore, the generated scrambled image is embedded into the elliptic curve for the encrypted by EC-ElGamal which can not only improve the security but also can help solve the key management problems. Finally, the diffusion combined chaos game with DNA sequence is executed to get the cipher image. The experimental analysis and performance comparisons demonstrate that the proposed method has high security, good efficiency, and strong robustness against the chosen-plaintext attack which make it have potential applications for the image secure communications.
2020-07-24
Tan, Syh-Yuan, Yeow, Kin-Woon, Hwang, Seong Oun.  2019.  Enhancement of a Lightweight Attribute-Based Encryption Scheme for the Internet of Things. IEEE Internet of Things Journal. 6:6384—6395.

In this paper, we present the enhancement of a lightweight key-policy attribute-based encryption (KP-ABE) scheme designed for the Internet of Things (IoT). The KP-ABE scheme was claimed to achieve ciphertext indistinguishability under chosen-plaintext attack in the selective-set model but we show that the KP-ABE scheme is insecure even in the weaker security notion, namely, one-way encryption under the same attack and model. In particular, we show that an attacker can decrypt a ciphertext which does not satisfy the policy imposed on his decryption key. Subsequently, we propose an efficient fix to the KP-ABE scheme as well as extending it to be a hierarchical KP-ABE (H-KP-ABE) scheme that can support role delegation in IoT applications. An example of applying our H-KP-ABE on an IoT-connected healthcare system is given to highlight the benefit of the delegation feature. Lastly, using the NIST curves secp192k1 and secp256k1, we benchmark the fixed (hierarchical) KP-ABE scheme on an Android phone and the result shows that the scheme is still the fastest in the literature.

2017-12-27
Gençoğlu, M. T..  2017.  Mathematical cryptanalysis of \#x201C;personalized information encryption using ECG signals with chaotic functions \#x201D;. 2017 International Conference on Computer Science and Engineering (UBMK). :878–881.

The chaotic system and cryptography have some common features. Due to the close relationship between chaotic system and cryptosystem, researchers try to combine the chaotic system with cryptosystem. In this study, security analysis of an encryption algorithm which aims to encrypt the data with ECG signals and chaotic functions was performed using the Logistic map in text encryption and Henon map in image encryption. In the proposed algorithm, text and image data can be encrypted at the same time. In addition, ECG signals are used to determine the initial conditions and control parameters of the chaotic functions used in the algorithm to personalize of the encryption algorithm. In this cryptanalysis study, the inadequacy of the mentioned process and the weaknesses of the proposed method have been determined. Encryption algorithm has not sufficient capacity to provide necessary security level of key space and secret key can be obtained with only one plaintext/ciphertext pair with chosen-plaintext attack.