Visible to the public Biblio

Filters: Keyword is Henon mapping  [Clear All Filters]
2021-01-22
Xu, H., Jiang, H..  2019.  An Image Encryption Schema Based on Hybrid Optimized Chaotic System. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :784–788.

The purpose of this paper is to improve the safety of chaotic image encryption algorithm. Firstly, to achieve this goal, it put forward two improved chaotic system logistic and henon, which covered an promoted henon chaotic system with better probability density, and an 2-dimension logistic chaotic system with high Lyapunov exponents. Secondly, the chaotic key stream was generated by the new 2D logistic chaotic system and optimized henon mapping, which mixed in dynamic proportions. The conducted sequence has better randomness and higher safety for image cryptosystem. Thirdly, we proposed algorithm takes advantage of the compounded chaotic system Simulation experiment results and security analysis showed that the proposed scheme was more effective and secure. It can resist various typical attacks, has high security, satisfies the requirements of image encryption theoretical.

2020-09-08
Xu, Hong-Li, JIANG, HongHua.  2019.  An Image Encryption Schema Based on Hybrid Optimized Chaotic System. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :784–788.
The purpose of this paper is to improve the safety of chaotic image encryption algorithm. Firstly, to achieve this goal, it put forward two improved chaotic system logistic and henon, which covered an promoted henon chaotic system with better probability density, and an 2-dimension logistic chaotic system with high Lyapunov exponents. Secondly, the chaotic key stream was generated by the new 2D logistic chaotic system and optimized henon mapping, which mixed in dynamic proportions. The conducted sequence has better randomness and higher safety for image cryptosystem. Thirdly, we proposed algorithm takes advantage of the compounded chaotic system Simulation experiment results and security analysis showed that the proposed scheme was more effective and secure. It can resist various typical attacks, has high security, satisfies the requirements of image encryption theoretical.
2019-11-25
Sathiyamurthi, P, Ramakrishnan, S, Shobika, S, Subashri, N, Prakavi, M.  2018.  Speech and Audio Cryptography System using Chaotic Mapping and Modified Euler's System. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :606–611.
Security often requires that the data must be kept safe from unauthorized access. And the best line of speech communication is security. However, most computers are interconnected with each other openly, thereby exposing them and the communication channels that person uses. Speech cryptography secures information by protecting its confidentiality. It can also be used to protect information about the integrity and authenticity of data. Stronger cryptographic techniques are needed to ensure the integrity of data stored on a machine that may be infected or under attack. So far speech cryptography is used in many forms but using it with Audio file is another stronger technique. The process of cryptography happens with audio file for transferring more secure sensitive data. The audio file is encrypted and decrypted by using Lorenz 3D mapping and then 3D mapping function is converted into 2D mapping function by using euler's numerical resolution and strong algorithm provided by using henon mapping and then decrypted by using reverse of encryption. By implementing this, the resultant audio file will be in secured form.
2017-12-27
Gençoğlu, M. T..  2017.  Mathematical cryptanalysis of \#x201C;personalized information encryption using ECG signals with chaotic functions \#x201D;. 2017 International Conference on Computer Science and Engineering (UBMK). :878–881.

The chaotic system and cryptography have some common features. Due to the close relationship between chaotic system and cryptosystem, researchers try to combine the chaotic system with cryptosystem. In this study, security analysis of an encryption algorithm which aims to encrypt the data with ECG signals and chaotic functions was performed using the Logistic map in text encryption and Henon map in image encryption. In the proposed algorithm, text and image data can be encrypted at the same time. In addition, ECG signals are used to determine the initial conditions and control parameters of the chaotic functions used in the algorithm to personalize of the encryption algorithm. In this cryptanalysis study, the inadequacy of the mentioned process and the weaknesses of the proposed method have been determined. Encryption algorithm has not sufficient capacity to provide necessary security level of key space and secret key can be obtained with only one plaintext/ciphertext pair with chosen-plaintext attack.