Visible to the public Biblio

Filters: Keyword is Optics  [Clear All Filters]
2023-04-14
Senlin, Yan.  2022.  The Technology and System of Chaotic Laser AVSK Coding and Combined Coding for Optics Secure Communications. 2022 IEEE 10th International Conference on Information, Communication and Networks (ICICN). :212–216.
We present a novel chaotic laser coding technology of alternate variable secret-key (AVSK) for optics secure communication using alternate variable orbits (AVOs) method. We define the principle of chaotic AVSK encoding and decoding, and introduce a chaotic AVSK communication platform and its coding scheme. And then the chaotic AVSK coding technology be successfully achieved in encrypted optics communications while the presented AVO function, as AVSK, is adjusting real-time chaotic phase space trajectory, where the AVO function and AVSK according to our needs can be immediately variable and adjustable. The coding system characterizes AVSK of emitters. And another combined AVSK coding be discussed. So the system's security enhances obviously because it increases greatly the difficulty for intruders to decipher the information from the carrier. AVSK scheme has certain reference value for the research of chaotic laser secure communication and laser network synchronization.
2023-03-31
Lu, Xiuyun, Zhao, Wenxing, Zhu, Yuquan.  2022.  Research on Network Security Protection System Based on Computer Big Data Era. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1487–1490.
This paper designs a network security protection system based on artificial intelligence technology from two aspects of hardware and software. The system can simultaneously collect Internet public data and secret-related data inside the unit, and encrypt it through the TCM chip solidified in the hardware to ensure that only designated machines can read secret-related materials. The data edge-cloud collaborative acquisition architecture based on chip encryption can realize the cross-network transmission of confidential data. At the same time, this paper proposes an edge-cloud collaborative information security protection method for industrial control systems by combining end-address hopping and load balancing algorithms. Finally, using WinCC, Unity3D, MySQL and other development environments comprehensively, the feasibility and effectiveness of the system are verified by experiments.
2022-10-20
Han, Liangshuang, Yu, Xuejun.  2021.  Research on Cloud End-User Behavior Trust Evaluation Model Based on Sliding Window. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :270—277.
As a new service-oriented computing paradigm, cloud computing facilitates users to share and use resources. However, due to the dynamic and openness of its operating environment, only relying on traditional identity authentication technology can no longer fully meet the security requirements of cloud computing. The trust evaluation of user behavior has become the key to improve the security of cloud computing. Therefore, in view of some problems existing in our current research on user behavior trust, this paper optimizes and improves the construction of the evaluation index system and the calculation of trust value, and proposes a cloud end-user behavior trust evaluation model based on sliding window. Finally, the model is proved to be scientific and effective by simulation experiments, which has certain significance for the security protection of cloud resources.
2022-07-15
Wang, Shilei, Wang, Hui, Yu, Hongtao, Zhang, Fuzhi.  2021.  Detecting shilling groups in recommender systems based on hierarchical topic model. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :832—837.
In a group shilling attack, attackers work collaboratively to inject fake profiles aiming to obtain desired recommendation result. This type of attacks is more harmful to recommender systems than individual shilling attacks. Previous studies pay much attention to detect individual attackers, and little work has been done on the detection of shilling groups. In this work, we introduce a topic modeling method of natural language processing into shilling attack detection and propose a shilling group detection method on the basis of hierarchical topic model. First, we model the given dataset to a series of user rating documents and use the hierarchical topic model to learn the specific topic distributions of each user from these rating documents to describe user rating behaviors. Second, we divide candidate groups based on rating value and rating time which are not involved in the hierarchical topic model. Lastly, we calculate group suspicious degrees in accordance with several indicators calculated through the analysis of user rating distributions, and use the k-means clustering algorithm to distinguish shilling groups. The experimental results on the Netflix and Amazon datasets show that the proposed approach performs better than baseline methods.
2022-06-30
Senlin, Yan.  2021.  Study on An Alternate-Channel Chaotic Laser Secure Communication System and Shifting Secret Keys to Enhance Security. 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1—6.
We present an alternate-channel chaotic laser secure communication system to enhance information communication security and study its technical solution via combining chaos shift keying (CSK) and chaos masking (CM). Two coupled lasers and other two single lasers are introduced as a novel alternate-channel secure communication system, where one of two coupled lasers is modulated via CSK to encode a digital signal and the other of coupled lasers is used to emit a chaotic carrier to mask an information using CM. The two single lasers are used to decode CSK and CM information, respectively. And such CSK performance results in enhancement of CM secure performance because of in-time variation of the emitter' parameter as secret keys. The obtained numerical results show that the encoding and decoding can be successfully performed. The study is beneficial to chaotic cryptography and optics secure communication.
2022-03-23
Wenlong, Wang, Jianquan, Liang.  2021.  Research on Node Anomaly Detection Method in Smart Grid by Beta Distribution Theory. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :755—758.
As the extensive use of the wireless sensor networks in Advanced Metering Infrastructure (AMI) of Smart Grid, the network security of AMI becomes more important. Thus, an optimization of trust management mechanism of Beta distribution theory is put forward in this article. First of all, a self-adaption method of trust features sampling is proposed, that adjusts acquisition frequency according to fluctuation of trust attribute collected, which makes the consumption of network resource minimum under the precondition of ensuring accuracy of trust value; Then, the collected trust attribute is judged based on the Mahalanobis distance; Finally, calculate the nodes’ trust value by the optimization of the Beta distribution theory. As the simulation shows, the trust management scheme proposed is suited to WSNs in AMI, and able to reflect the trust value of nodes in a variety of circumstances change better.
2022-03-02
Zhang, Deng, Wang, Junkai.  2021.  Research on Security Protection Method of Industrial Control Boundary Network. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :560–563.
Aiming at the problems of single protection, lack of monitoring and unable to be physically isolated in time under abnormal conditions, an industrial control boundary network security protection method is provided. Realize the real-time monitoring and analysis of the network behavior of the industrial control boundary, realize the in-depth defense of the industrial control boundary, and timely block it in the way of logical link and physical link isolation in case of illegal intrusion, so as to comprehensively improve the protection level of the boundary security of the industrial control system.
2021-08-17
Shiwei, Huo, Yubo, Tang, Shaojun, Liu, Balin, Tian.  2020.  Security Analysis and Improvement of Identity-based Key Management Scheme for Airborne Ad Hoc Networks. 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :209–213.
An identity-based distributed key management scheme for airborne ad hoc networks is analyzed. It is demonstrated that in the generation phase of user private key, the user identity certificate is transmitted in the public channel, so that the attacker can use the intercepted identity certificate to fake the legitimate node and cheat the distributed key generation center to generate private key for it. Then, an improved authentication scheme is proposed. It constructs the signature of timestamp using the private key of the user node as authentication proof, so that the attacker can't forge the authentication information. It is showed that the improved scheme can effectively resist the forgery attack, and further reduce the computing cost of user nodes while realizing all the functions of the original scheme.
2021-06-30
Liu, Siqi, Liu, Shuangyue, Tang, Xizi, Guo, Mengqi, Lu, Yueming, Qiao, Yaojun.  2020.  QPSK-Assisted MIMO Equalization for 800-Gb/s/λ DP-256QAM Systems. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1—3.
A QPSK-assisted MIMO equalization is investigated to compensate bandwidth limitation for 800-Gb/s/λ DP-256QAM systems with only 25G-class optics. Compared with conventional MIMO equalization, the proposed equalization scheme exhibits 1.8-dB OSNR improvement at 15% FEC limit.
2017-12-27
Gençoğlu, M. T..  2017.  Mathematical cryptanalysis of \#x201C;personalized information encryption using ECG signals with chaotic functions \#x201D;. 2017 International Conference on Computer Science and Engineering (UBMK). :878–881.

The chaotic system and cryptography have some common features. Due to the close relationship between chaotic system and cryptosystem, researchers try to combine the chaotic system with cryptosystem. In this study, security analysis of an encryption algorithm which aims to encrypt the data with ECG signals and chaotic functions was performed using the Logistic map in text encryption and Henon map in image encryption. In the proposed algorithm, text and image data can be encrypted at the same time. In addition, ECG signals are used to determine the initial conditions and control parameters of the chaotic functions used in the algorithm to personalize of the encryption algorithm. In this cryptanalysis study, the inadequacy of the mentioned process and the weaknesses of the proposed method have been determined. Encryption algorithm has not sufficient capacity to provide necessary security level of key space and secret key can be obtained with only one plaintext/ciphertext pair with chosen-plaintext attack.