Biblio
The economic progress of the Internet of Things (IoT) is phenomenal. Applications range from checking the alignment of some components during a manufacturing process, monitoring of transportation and pedestrian levels to enhance driving and walking path, remotely observing terminally ill patients by means of medical devices such as implanted devices and infusion pumps, and so on. To provide security, encrypting the data becomes an indispensable requirement, and symmetric encryptions algorithms are becoming a crucial implementation in the resource constrained environments. Typical symmetric encryption algorithms like Advanced Encryption Standard (AES) showcases an assumption that end points of communications are secured and that the encryption key being securely stored. However, devices might be physically unprotected, and attackers may have access to the memory while the data is still encrypted. It is essential to reserve the key in such a way that an attacker finds it hard to extract it. At present, techniques like White-Box cryptography has been utilized in these circumstances. But it has been reported that applying White-Box cryptography in IoT devices have resulted in other security issues like the adversary having access to the intermediate values, and the practical implementations leading to Code lifting attacks and differential attacks. In this paper, a solution is presented to overcome these problems by demonstrating the need of White-Box Cryptography to enhance the security by utilizing the cipher block chaining (CBC) mode.
With the advancement of sensor electronic devices, wireless sensor networks have attracted more and more attention. Range query has become a significant part of sensor networks due to its availability and convenience. However, It is challenging to process range query while still protecting sensitive data from disclosure. Existing work mainly focuses on privacy- preserving range query, but neglects the damage of collusion attacks, probability attacks and differential attacks. In this paper, we propose a privacy- preserving, energy-efficient and multi-dimensional range query protocol called PERQ, which not only achieves data privacy, but also considers collusion attacks, probability attacks and differential attacks. Generalized distance-based and modular arithmetic range query mechanism are used. In addition, a novel cyclic modular verification scheme is proposed to verify the data integrity. Extensive theoretical analysis and experimental results confirm the high performance of PERQ in terms of energy efficiency, security and accountability requirements.
In this paper, a novel quantum encryption algorithm for color image is proposed based on multiple discrete chaotic systems. The proposed quantum image encryption algorithm utilize the quantum controlled-NOT image generated by chaotic logistic map, asymmetric tent map and logistic Chebyshev map to control the XOR operation in the encryption process. Experiment results and analysis show that the proposed algorithm has high efficiency and security against differential and statistical attacks.