Visible to the public Biblio

Filters: Keyword is Arnold cat map  [Clear All Filters]
2022-06-30
Elzaher, Mahmoud F. Abd, Shalaby, Mohamed.  2021.  Two-level chaotic system versus non-autonomous modulation in the context of chaotic voice encryption. 2021 International Telecommunications Conference (ITC-Egypt). :1—6.
In this paper, two methods are introduced for securing voice communication. The first technique applies multilevel chaos-based block cipher and the second technique applies non-autonomous chaotic modulation. In the first approach, the encryption method is implemented by joining Arnold cat map with the Lorenz system. This method depends on permuting and substituting voice samples. Applying two levels of a chaotic system, enhances the security of the encrypted signal. the permutation process of the voice samples is implemented by applying Arnold cat map, then use Lorenz chaotic flow to create masking key and consequently substitute the permuted samples. In the second method, an encryption method based on non-autonomous modulation is implemented, in the master system, and the voice injection process is applied into one variable of the Lorenz chaotic flow without modifying the state of controls parameter. Non-autonomous modulation is proved to be more suitable than other techniques for securing real-time applications; it also masters the problems of chaotic parameter modulation and chaotic masking. A comparative study of these methods is presented.
2022-03-14
Salunke, Sharad, Venkatadri, M., Hashmi, Md. Farukh, Ahuja, Bharti.  2021.  An Implicit Approach for Visual Data: Compression Encryption via Singular Value Decomposition, Multiple Chaos and Beta Function. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—5.
This paper proposes a digital image compression-encryption scheme based on the theory of singular value decomposition, multiple chaos and Beta function, which uses SVD to compress the digital image and utilizes three way protections for encryption viz. logistic and Arnold map along with the beta function. The algorithm has three advantages: First, the compression scheme gives the freedom to a user so that one can select the desired compression level according to the application with the help of singular value. Second, it includes a confusion mechanism wherein the pixel positions of image are scrambled employing Cat Map. The pixel location is shuffled, resulting in a cipher text image that is safe for communication. Third the key is generated with the help of logistic map which is nonlinear and chaotic in nature therefore highly secured. Fourth the beta function used for encryption is symmetric in nature which means the order of its parameters does not change the outcome of the operation, meaning faithful reconstruction of an image. Thus, the algorithm is highly secured and also saving the storage space as well. The experimental results show that the algorithm has the advantages of faithful reconstruction with reasonable PSNR on different singular values.
2017-12-27
Shyamala, N., Anusudha, K..  2017.  Reversible Chaotic Encryption Techniques For Images. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). :1–5.

Image encryption takes been used by armies and governments to help top-secret communication. Nowadays, this one is frequently used for guarding info among various civilian systems. To perform secure image encryption by means of various chaotic maps, in such system a legal party may perhaps decrypt the image with the support of encryption key. This reversible chaotic encryption technique makes use of Arnold's cat map, in which pixel shuffling offers mystifying the image pixels based on the number of iterations decided by the authorized image owner. This is followed by other chaotic encryption techniques such as Logistic map and Tent map, which ensures secure image encryption. The simulation result shows the planned system achieves better NPCR, UACI, MSE and PSNR respectively.