Visible to the public Biblio

Filters: Keyword is Diffusion  [Clear All Filters]
2021-01-18
Anupadma, S., Dharshini, B. S., Roshini, S., K, J. Singh.  2020.  Random selective block encryption technique for image cryptography using chaotic cryptography. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–5.
Dynamic random growth technique and a hybrid chaotic map which is proposed in this paper are used to perform block-based image encryption. The plaintext attack can easily crack the cat map, as it is periodic, and therefore cat map securely used in which it can eliminate the cyclical occurrence and withstand the plaintext attack's effect. The diffusion process calculates the intermediate parameters according to the image block. For the generation of the random data stream in the chaotic map, we use an intermediate parameter as an initial parameter. In this way, the generated data stream depends on the plain text image that can withstand the attack on plain text. The experimental results of this process prove that the proposed dynamic random growth technique and a hybrid chaotic map for image encryption is a secured one in which it can be used in secured image transmission systems.
2020-06-22
Ravichandran, Dhivya, Fathima, Sherin, Balasubramanian, Vidhyadharini, Banu, Aashiq, Anushiadevi, Amirtharajan, Rengarajan.  2019.  DNA and Chaos Based Confusion-Diffusion for Color Image Security. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–6.
Nowadays, secure transmission of multimedia files has become more significant concern with the evolution of technologies. Cryptography is the well-known technique to safeguard the files from various destructive hacks. In this work, a colour image encryption scheme is suggested using chaos and Deoxyribo Nucleic Acid (DNA) coding. The encryption scheme is carried out in two stages namely confusion and diffusion. As the first stage, chaos aided inter-planar row and column shuffling are performed to shuffle the image pixels completely. DNA coding and decoding operations then diffuse the resultant confused image with the help of eight DNA XOR rules. This confusion-diffusion process has achieved the entropy value equal to 7.9973 and correlation coefficient nearer to zero with key space of 10140. Various other analyses are also done to ensure the effectiveness of the developed algorithm. The results show that the proposed scheme can withstand different attacks and better than the recent state-of-art methods.
2019-11-25
Ye, Ruisong, Li, Yinhua, Li, Yajuan.  2018.  An Image Encryption Scheme Based on Fractal Interpolation. Proceedings of the 3rd International Conference on Multimedia and Image Processing. :52–56.
In this paper, a novel chaotic image encryption scheme based on the inverse fractal interpolation function system is proposed. The inverse fractal interpolation function system associated with fractal interpolation surface is applied to generate chaotic sequences. The derived sequences are then employed to permute the pixel positions to get the shuffled image by chaotic sequence sorting. The obtained chaotic sequences are then quantized to yield one pseudo-random gray value sequence used to perform diffusion to enhance the security. The security and performance of the proposed image encryption scheme have been analysed, including histograms, correlation coefficients, information entropy, differential analysis, etc. All the experimental results suggest that the proposed image encryption scheme is robust and secure and can be used for secure image and video communication applications.
Ye, Guodong, Huang, Xiaoling, Pan, Chen.  2018.  An Efficient Image Encryption Algorithm Based on Three-dimensional Chaotic Map. Proceedings of the 2Nd International Conference on Advances in Image Processing. :78–82.
In this paper, a new image encryption algorithm is presented with one chaotic map and one group of secret keys. Double permutations for pixel positions are designed followed by a function of diffusion to alter gray distribution in the plain-image. In the proposed algorithm, the keystream is produced and dependent on the plain-image. As a result, the method can frustrate the known plaintext attack and chosen plaintext attack. Moreover, diffusion encryption by row-only is applied to the permuted image to save time consumption. Then, the experimental results show that our method can perform high security and is suitable for both gray and color images.
2018-05-30
Akbarpour, Mohammad, Jackson, Matthew.  2017.  Diffusion in Networks and the Unexpected Virtue of Burstiness. Proceedings of the 2017 ACM Conference on Economics and Computation. :543–543.
Whether an idea, information, disease, or innovation diffuses throughout a society depends not only on the structure of the network of interactions, but also on the timing of those interactions. Recent studies have shown that diffusion can fail on a network in which people are only active in "bursts," active for a while and then silent for a while, but diffusion could succeed on the same network if people were active in a more random Poisson manner. Those studies generally consider models in which nodes are active according to the same random timing process and then ask which timing is optimal. In reality, people differ widely in their activity patterns – some are bursty and others are not. We model diffusion on networks in which agents differ in their activity patterns. We show that bursty behavior does not always hurt the diffusion, and in fact having some (but not all) of the population be bursty significantly helps diffusion. We prove that maximizing diffusion requires heterogeneous activity patterns across agents, and the overall maximizing pattern of agents' activity times does not involve any Poisson behavior.
2017-12-27
Slimane, N. B., Bouallegue, K., Machhout, M..  2017.  A novel image encryption scheme using chaos, hyper-chaos systems and the secure Hash algorithm SHA-1. 2017 International Conference on Control, Automation and Diagnosis (ICCAD). :141–145.

In this paper, we introduce a fast, secure and robust scheme for digital image encryption using chaotic system of Lorenz, 4D hyper-chaotic system and the Secure Hash Algorithm SHA-1. The encryption process consists of three layers: sub-vectors confusion and two-diffusion process. In the first layer we divide the plainimage into sub-vectors then, the position of each one is changed using the chaotic index sequence generated with chaotic attractor of Lorenz, while the diffusion layers use hyper-chaotic system to modify the values of pixels using an XOR operation. The results of security analysis such as statistical tests, differential attacks, key space, key sensitivity, entropy information and the running time are illustrated and compared to recent encryption schemes where the highest security level and speed are improved.