Visible to the public Biblio

Filters: Keyword is Lithium ion battery  [Clear All Filters]
2017-12-28
Guo, J., Li, Z..  2017.  A Mean-Covariance Decomposition Modeling Method for Battery Capacity Prognostics. 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). :549–556.

Lithium Ion batteries usually degrade to an unacceptable capacity level after hundreds or even thousands of cycles. The continuously observed capacity fade data over time and their internal structure can be informative for constructing capacity fade models. This paper applies a mean-covariance decomposition modeling method to analyze the capacity fade data. The proposed approach directly examines the variances and correlations in data of interest and express the correlation matrix in hyper-spherical coordinates using angles and trigonometric functions. The proposed method is applied to model and predict key batteries performance metrics using testing data under various testing conditions.