Visible to the public Biblio

Filters: Keyword is matrix multiplication  [Clear All Filters]
2021-06-01
Abhinav, P Y, Bhat, Avakash, Joseph, Christina Terese, Chandrasekaran, K.  2020.  Concurrency Analysis of Go and Java. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
There has been tremendous progress in the past few decades towards developing applications that receive data and send data concurrently. In such a day and age, there is a requirement for a language that can perform optimally in such environments. Currently, the two most popular languages in that respect are Go and Java. In this paper, we look to analyze the concurrency features of Go and Java through a complete programming language performance analysis, looking at their compile time, run time, binary sizes and the language's unique concurrency features. This is done by experimenting with the two languages using the matrix multiplication and PageRank algorithms. To the extent of our knowledge, this is the first work which used PageRank algorithm to analyse concurrency. Considering the results of this paper, application developers and researchers can hypothesize on an appropriate language to use for their concurrent programming activity.Results of this paper show that Go performs better for fewer number of computation but is soon taken over by Java as the number of computations drastically increase. This trend is shown to be the opposite when thread creation and management is considered where Java performs better with fewer computation but Go does better later on. Regarding concurrency features both Java with its Executor Service library and Go had their own advantages that made them better for specific applications.
2020-12-15
Chen, Z., Jia, Z., Wang, Z., Jafar, S. A..  2020.  GCSA Codes with Noise Alignment for Secure Coded Multi-Party Batch Matrix Multiplication. 2020 IEEE International Symposium on Information Theory (ISIT). :227—232.

A secure multi-party batch matrix multiplication problem (SMBMM) is considered, where the goal is to allow a master to efficiently compute the pairwise products of two batches of massive matrices, by distributing the computation across S servers. Any X colluding servers gain no information about the input, and the master gains no additional information about the input beyond the product. A solution called Generalized Cross Subspace Alignment codes with Noise Alignment (GCSA- NA) is proposed in this work, based on cross-subspace alignment codes. The state of art solution to SMBMM is a coding scheme called polynomial sharing (PS) that was proposed by Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in several key aspects - more efficient and secure inter-server communication, lower latency, flexible inter-server network topology, efficient batch processing, and tolerance to stragglers.

2020-10-06
Bartan, Burak, Pilanci, Mert.  2019.  Straggler Resilient Serverless Computing Based on Polar Codes. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :276—283.

We propose a serverless computing mechanism for distributed computation based on polar codes. Serverless computing is an emerging cloud based computation model that lets users run their functions on the cloud without provisioning or managing servers. Our proposed approach is a hybrid computing framework that carries out computationally expensive tasks such as linear algebraic operations involving large-scale data using serverless computing and does the rest of the processing locally. We address the limitations and reliability issues of serverless platforms such as straggling workers using coding theory, drawing ideas from recent literature on coded computation. The proposed mechanism uses polar codes to ensure straggler-resilience in a computationally effective manner. We provide extensive evidence showing polar codes outperform other coding methods. We have designed a sequential decoder specifically for polar codes in erasure channels with full-precision input and outputs. In addition, we have extended the proposed method to the matrix multiplication case where both matrices being multiplied are coded. The proposed coded computation scheme is implemented for AWS Lambda. Experiment results are presented where the performance of the proposed coded computation technique is tested in optimization via gradient descent. Finally, we introduce the idea of partial polarization which reduces the computational burden of encoding and decoding at the expense of straggler-resilience.

2020-06-08
Das, Bablu Kumar, Garg, Ritu.  2019.  Security of Cloud Storage based on Extended Hill Cipher and Homomorphic Encryption. 2019 International Conference on Communication and Electronics Systems (ICCES). :515–520.
Cloud computing is one of the emerging area in the business world that help to access resources at low expense with high privacy. Security is a standout amongst the most imperative difficulties in cloud network for cloud providers and their customers. In order to ensure security in cloud, we proposed a framework using different encryption algorithm namely Extended hill cipher and homomorphic encryption. Firstly user data/information is isolated into two parts which is static and dynamic data (critical data). Extended hill cipher encryption is applied over more important dynamic part where we are encrypting the string using matrix multiplication. While homomorphic encryption is applied over static data in which it accepts n number of strings as information, encode each string independently and lastly combine all the strings. The test results clearly manifests that the proposed model provides better information security.
2020-06-02
Aliasgari, Malihe, Simeone, Osvaldo, Kliewer, Jörg.  2019.  Distributed and Private Coded Matrix Computation with Flexible Communication Load. 2019 IEEE International Symposium on Information Theory (ISIT). :1092—1096.

Tensor operations, such as matrix multiplication, are central to large-scale machine learning applications. These operations can be carried out on a distributed computing platform with a master server at the user side and multiple workers in the cloud operating in parallel. For distributed platforms, it has been recently shown that coding over the input data matrices can reduce the computational delay, yielding a tradeoff between recovery threshold and communication load. In this work, we impose an additional security constraint on the data matrices and assume that workers can collude to eavesdrop on the content of these data matrices. Specifically, we introduce a novel class of secure codes, referred to as secure generalized PolyDot codes, that generalizes previously published non-secure versions of these codes for matrix multiplication. These codes extend the state-of-the-art by allowing a flexible trade-off between recovery threshold and communication load for a fixed maximum number of colluding workers.

2020-05-22
Sheth, Utsav, Dutta, Sanghamitra, Chaudhari, Malhar, Jeong, Haewon, Yang, Yaoqing, Kohonen, Jukka, Roos, Teemu, Grover, Pulkit.  2018.  An Application of Storage-Optimal MatDot Codes for Coded Matrix Multiplication: Fast k-Nearest Neighbors Estimation. 2018 IEEE International Conference on Big Data (Big Data). :1113—1120.
We propose a novel application of coded computing to the problem of the nearest neighbor estimation using MatDot Codes (Fahim et al., Allerton'17) that are known to be optimal for matrix multiplication in terms of recovery threshold under storage constraints. In approximate nearest neighbor algorithms, it is common to construct efficient in-memory indexes to improve query response time. One such strategy is Multiple Random Projection Trees (MRPT), which reduces the set of candidate points over which Euclidean distance calculations are performed. However, this may result in a high memory footprint and possibly paging penalties for large or high-dimensional data. Here we propose two techniques to parallelize MRPT that exploit data and model parallelism respectively by dividing both the data storage and the computation efforts among different nodes in a distributed computing cluster. This is especially critical when a single compute node cannot hold the complete dataset in memory. We also propose a novel coded computation strategy based on MatDot codes for the model-parallel architecture that, in a straggler-prone environment, achieves the storage-optimal recovery threshold, i.e., the number of nodes that are required to serve a query. We experimentally demonstrate that, in the absence of straggling, our distributed approaches require less query time than execution on a single processing node, providing near-linear speedups with respect to the number of worker nodes. Our experiments on real systems with simulated straggling, we also show that in a straggler-prone environment, our strategy achieves a faster query execution than the uncoded strategy.
2018-02-21
Fu, Shaojing, Yu, Yunpeng, Xu, Ming.  2017.  A Secure Algorithm for Outsourcing Matrix Multiplication Computation in the Cloud. Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. :27–33.
Matrix multiplication computation (MMC) is a common scientific and engineering computational task. But such computation involves enormous computing resources for large matrices, which is burdensome for the resource-limited clients. Cloud computing enables computational resource-limited clients to economically outsource such problems to the cloud server. However, outsourcing matrix multiplication to the cloud brings great security concerns and challenges since the matrices and their products often usually contains sensitive information. In a previous work, Lei et al. [1] proposed an algorithm for secure outsourcing MMC by using permutation matrix and the authors argued that it can achieve data privacy. In this paper, we first review the design of Lei's scheme and find a security vulnerability in their algorithm that it reveals the number of zero element in the input matrix to cloud server. Then we present a new verifiable, efficient, and privacy preserving algorithm for outsourcing MMC, which can protect the number privacy of zero elements in original matrices. Our algorithm builds on a series of carefully-designed pseudorandom matrices and well-designed privacy-preserving matrix transformation. Security analysis shows that our algorithm is practically-secure, and offers a higher level of privacy protection than the state-of-the-art algorithm.
2018-02-14
Liu, Z., Liao, Y., Yang, X., He, Y., Zhao, K..  2017.  Identity-Based Remote Data Integrity Checking of Cloud Storage From Lattices. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :128–135.
In cloud storage, remote data integrity checking is considered as a crucial technique about data owners who upload enormous data to cloud server provider. A majority of the existing remote data integrity checking protocols rely on the expensive public key infrastructure. In addition, the verification of certificates needs heavy computation and communication cost. Meanwhile, the existing some protocols are not secure under the quantum computer attacks. However, lattice-based constructed cryptography can resist quantum computer attacks and is fairly effective, involving matrix-matrix or matrix-vector multiplications. So, we propose an identity-based remote data integrity checking protocol from lattices, which can eliminate the certificate management process and resist quantum computer attacks. Our protocol is completeness and provably secure based on the hardness small integer solution assumption. The presented scheme is secure against cloud service provider attacks, and leaks no any blocks of the stored file to the third party auditor during verification stage, namely the data privacy against the curiosity third party auditor attacks. The cloud service provider attack includes lost attack and tamper attack. Furthermore, the performance analysis of some protocols demonstrate that our protocol of remote data integrity checking is useful and efficient.
2017-12-28
Rolinger, T. B., Simon, T. A., Krieger, C. D..  2017.  Performance challenges for heterogeneous distributed tensor decompositions. 2017 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

Tensor decompositions, which are factorizations of multi-dimensional arrays, are becoming increasingly important in large-scale data analytics. A popular tensor decomposition algorithm is Canonical Decomposition/Parallel Factorization using alternating least squares fitting (CP-ALS). Tensors that model real-world applications are often very large and sparse, driving the need for high performance implementations of decomposition algorithms, such as CP-ALS, that can take advantage of many types of compute resources. In this work we present ReFacTo, a heterogeneous distributed tensor decomposition implementation based on DeFacTo, an existing distributed memory approach to CP-ALS. DFacTo reduces the critical routine of CP-ALS to a series of sparse matrix-vector multiplications (SpMVs). ReFacTo leverages GPUs within a cluster via MPI to perform these SpMVs and uses OpenMP threads to parallelize other routines. We evaluate the performance of ReFacTo when using NVIDIA's GPU-based cuSPARSE library and compare it to an alternative implementation that uses Intel's CPU-based Math Kernel Library (MKL) for the SpMV. Furthermore, we provide a discussion of the performance challenges of heterogeneous distributed tensor decompositions based on the results we observed. We find that on up to 32 nodes, the SpMV of ReFacTo when using MKL is up to 6.8× faster than ReFacTo when using cuSPARSE.