Visible to the public Biblio

Filters: Keyword is data conversion  [Clear All Filters]
2022-02-07
Han, Sung-Hwa.  2021.  Analysis of Data Transforming Technology for Malware Detection. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :224–229.
As AI technology advances and its use increases, efforts to incorporate machine learning for malware detection are increasing. However, for malware learning, a standardized data set is required. Because malware is unstructured data, it cannot be directly learned. In order to solve this problem, many studies have attempted to convert unstructured data into structured data. In this study, the features and limitations of each were analyzed by investigating and analyzing the method of converting unstructured data proposed in each study into structured data. As a result, most of the data conversion techniques suggest conversion mechanisms, but the scope of each technique has not been determined. The resulting data set is not suitable for use as training data because it has infinite properties.
2017-12-28
Danesh, W., Rahman, M..  2017.  Linear regression based multi-state logic decomposition approach for efficient hardware implementation. 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). :153–154.

Multi-state logic presents a promising avenue for more-than-Moore scaling, since efficient implementation of multi-valued logic (MVL) can significantly reduce switching and interconnection requirements and result in significant benefits compared to binary CMOS. So far, traditional approaches lag behind binary CMOS due to: (a) reliance on logic decomposition approaches [4][5][6] that result in many multi-valued minterms [4], complex polynomials [5], and decision diagrams [6], which are difficult to implement, and (b) emulation of multi-valued computation and communication through binary switches and medium that require data conversion, and large circuits. In this paper, we propose a fundamentally different approach for MVL decomposition, merging concepts from data science and nanoelectronics to tackle the problems, (a) First, we do linear regression on all inputs and outputs of a multivalued function, and find an expression that fits most input and output combinations. For unmatched combinations, we do successive regressions to find linear expressions. Next, using our novel visual pattern matching technique, we find conditions based on input and output conditions to select each expression. These expressions along with associated selection criteria ensure that for all possible inputs of a specific function, correct output can be reached. Our selection of regression model to find linear expressions, coefficients and conditions allow efficient hardware implementation. We discuss an approach for solving problem (b) and show an example of quaternary sum circuit. Our estimates show 65.6% saving of switching components compared with a 4-bit CMOS adder.