Visible to the public Biblio

Filters: Keyword is network vulnerability  [Clear All Filters]
2022-07-29
Zhou, Runfu, Peng, Minfang, Gao, Xingle.  2021.  Vulnerability Assessment of Power Cyber-Physical System Considering Nodes Load Capacity. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1438—1441.
The power cyber-physical system combines the cyber network with the traditional electrical power network, which can monitor and control the operation of the power grid stably and efficiently. Since the system's structure and function is complicated and large, it becomes fragile as a result. Therefore, establishing a reasonable and effective CPS model and discussing its vulnerability performance under external attacks is essential and vital for power grid operation. This paper uses the theory of complex networks to establish a independent system model by IEEE-118-node power network and 200-node scale-free information network, introducing information index to identify and sort important nodes in the network, and then cascade model of the power cyber-physical system based on the node load capacity is constructed and the vulnerability assessment analysis is carried out. The simulation shows that the disintegration speed of the system structure under deliberate attacks is faster than random attacks; And increasing the node threshold can effectively inhibit the propagation of failure.
2022-01-10
Goncharov, V. V., Goncharov, A. V., Shavrin, S. S., Shishova, N. A..  2021.  The Cyber Attack on the Corporate Network Models Theoretical Aspects. 2021 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
Mathematical model of web server protection is being proposed based on filtering HTTP (Hypertext Transfer Protocol) packets that do not match the semantic parameters of the request standards of this protocol. The model is defined as a graph, and the relationship between the parameters - the sets of vulnerabilities of the corporate network, the methods of attacks and their consequences-is described by the Cartesian product, which provides the correct interpretation of a corporate network cyber attack. To represent the individual stages of simulated attacks, it is possible to separate graph models in order to model more complex attacks based on the existing simplest ones. The unity of the model proposed representation of cyber attack in three variants is shown, namely: graphic, text and formula.
2017-12-28
Duan, S., Li, Y., Levitt, K..  2016.  Cost sensitive moving target consensus. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). :272–281.

Consensus is a fundamental approach to implementing fault-tolerant services through replication. It is well known that there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing system and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.