Biblio
With rapid growth of network size and complexity, network defenders are facing more challenges in protecting networked computers and other devices from acute attacks. Traffic visualization is an essential element in an anomaly detection system for visual observations and detection of distributed DoS attacks. This paper presents an interactive visualization system called TVis, proposed to detect both low-rate and highrate DDoS attacks using Heron's triangle-area mapping. TVis allows network defenders to identify and investigate anomalies in internal and external network traffic at both online and offline modes. We model the network traffic as an undirected graph and compute triangle-area map based on incidences at each vertex for each 5 seconds time window. The system triggers an alarm iff the system finds an area of the mapped triangle beyond the dynamic threshold. TVis performs well for both low-rate and high-rate DDoS detection in comparison to its competitors.
One of the recent focuses in Cloud Computing networks is Software Defined Clouds (SDC), where the Software-Defined Networking (SDN) technology is combined with the traditional Cloud network. SDC is aimed to create an effective Cloud environment by extending the virtualization concept to all resources. In that, the control plane is decoupled from the data plane in a network device and controlled by the centralized controller using the OpenFlow Protocol (OFP). As the centralized controller performs all control functions in a network, it requires strong security. Already, Cloud Computing faces many security challenges. Most vulnerable attacks in SDC is Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks. To overcome the DoS attacks, we propose a distributed Firewall with Intrusion Prevention System (IPS) for SDC. The proposed distributed security mechanism is investigated for two DoS attacks, ICMP and SYN flooding attacks for different network scenarios. From the simulation results and discussion, we showed that the distributed Firewall with IPS security detects and prevents the DoS attack effectively.
IP spoofing based DDoS attack that relies on multiple compromised hosts in the network to attack the victim. In IP spoofing, IP addresses can be forged easily, thus, makes it difficult to filter illegitimate packets from legitimate one out of aggregated traffic. A number of mitigation techniques have been proposed in the literature by various researchers. The conventional Hop Count Filtering or probabilistic Hop Count Filtering based research work indicates the problems related to higher computational time and low detection rate of illegitimate packets. In this paper, DPHCF-RTT technique has been implemented and analysed for variable number of hops. Goal is to improve the limitations of Conventional HCF or Probabilistic HCF techniques by maximizing the detection rate of illegitimate packets and reducing the computation time. It is based on distributed probabilistic HCF using RTT. It has been used in an intermediate system. It has the advantage for resolving the problems of network bandwidth jam and host resources exhaustion. MATLAB 7 has been used for simulations. Mitigation of DDoS attacks have been done through DPHCF-RTT technique. It has been shown a maximum detection rate up to 99% of malicious packets.