Visible to the public Biblio

Filters: Keyword is malicious attack  [Clear All Filters]
2022-12-09
M, Gayathri, Gomathy, C..  2022.  Fuzzy based Trusted Communication in Vehicular Ad hoc Network. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.
Vehicular Ad hoc Network (VANET) is an emerging technology that is used to provide communication between vehicle users. VANET provides communication between one vehicle node to another vehicle node, vehicle to the roadside unit, vehicle to pedestrian, and even vehicle to rail users. Communication between nodes should be very secure and confidential, Since VANET communicates through wireless mode, a malicious node may enter inside the communication zone to hack, inject false messages, and interrupt the communication. A strong protocol is necessary to detect malicious nodes and authenticate the VANET user to protect them from malicious attacks. In this paper, a fuzzy-based trust authentication scheme is used to detect malicious nodes with the Mamdani fuzzy Inference system. The parameter estimation, rules have been framed using MATLAB Mamdani Fuzzy Inference system to select a genuine node for data transmission.
2021-04-08
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..  2020.  Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
2020-12-28
Zhang, C., Shahriar, H., Riad, A. B. M. K..  2020.  Security and Privacy Analysis of Wearable Health Device. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1767—1772.

Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.

2020-10-14
Wang, Yufeng, Shi, Wanjiao, Jin, Qun, Ma, Jianhua.  2019.  An Accurate False Data Detection in Smart Grid Based on Residual Recurrent Neural Network and Adaptive threshold. 2019 IEEE International Conference on Energy Internet (ICEI). :499—504.
Smart grids are vulnerable to cyber-attacks, which can cause significant damage and huge economic losses. Generally, state estimation (SE) is used to observe the operation of the grid. State estimation of the grid is vulnerable to false data injection attack (FDIA), so diagnosing this type of malicious attack has a major impact on ensuring reliable operation of the power system. In this paper, we present an effective FDIA detection method based on residual recurrent neural network (R2N2) prediction model and adaptive judgment threshold. Specifically, considering the data contains both linear and nonlinear components, the R2N2 model divides the prediction process into two parts: the first part uses the linear model to fit the state data; the second part predicts the nonlinearity of the residuals of the linear prediction model. The adaptive judgment threshold is inferred through fitting the Weibull distribution with the sum of squared errors between the predicted values and observed values. The thorough simulation results demonstrate that our scheme performs better than other prediction based FDIA detection schemes.
2020-09-04
Laguduva, Vishalini, Islam, Sheikh Ariful, Aakur, Sathyanarayanan, Katkoori, Srinivas, Karam, Robert.  2019.  Machine Learning Based IoT Edge Node Security Attack and Countermeasures. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :670—675.
Advances in technology have enabled tremendous progress in the development of a highly connected ecosystem of ubiquitous computing devices collectively called the Internet of Things (IoT). Ensuring the security of IoT devices is a high priority due to the sensitive nature of the collected data. Physically Unclonable Functions (PUFs) have emerged as critical hardware primitive for ensuring the security of IoT nodes. Malicious modeling of PUF architectures has proven to be difficult due to the inherently stochastic nature of PUF architectures. Extant approaches to malicious PUF modeling assume that a priori knowledge and physical access to the PUF architecture is available for malicious attack on the IoT node. However, many IoT networks make the underlying assumption that the PUF architecture is sufficiently tamper-proof, both physically and mathematically. In this work, we show that knowledge of the underlying PUF structure is not necessary to clone a PUF. We present a novel non-invasive, architecture independent, machine learning attack for strong PUF designs with a cloning accuracy of 93.5% and improvements of up to 48.31% over an alternative, two-stage brute force attack model. We also propose a machine-learning based countermeasure, discriminator, which can distinguish cloned PUF devices and authentic PUFs with an average accuracy of 96.01%. The proposed discriminator can be used for rapidly authenticating millions of IoT nodes remotely from the cloud server.
2020-02-10
Zheng, Junjun, Okamura, Hiroyuki, Dohi, Tadashi.  2019.  Security Evaluation of a VM-Based Intrusion-Tolerant System with Pull-Type Patch Management. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :156–163.

Computer security has gained more and more attention in a public over the last years, since computer systems are suffering from significant and increasing security threats that cause security breaches by exploiting software vulnerabilities. The most efficient way to ensure the system security is to patch the vulnerable system before a malicious attack occurs. Besides the commonly-used push-type patch management, the pull-type patch management is also adopted. The main issues in the pull-type patch management are two-fold; when to check the vulnerability information and when to apply a patch? This paper considers the security patch management for a virtual machine (VM) based intrusion tolerant system (ITS), where the system undergoes the patch management with a periodic vulnerability checking strategy, and evaluates the system security from the availability aspect. A composite stochastic reward net (SRN) model is applied to capture the attack behavior of adversary and the defense behaviors of system. Two availability measures; interval availability and point-wise availability are formulated to quantify the system security via phase expansion. The proposed approach and metrics not only enable us to quantitatively assess the system security, but also provide insights on the patch management. In numerical experiments, we evaluate effects of the intrusion rate and the number of vulnerability checking on the system security.

2019-02-08
Clark, G., Doran, M., Glisson, W..  2018.  A Malicious Attack on the Machine Learning Policy of a Robotic System. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :516-521.

The field of robotics has matured using artificial intelligence and machine learning such that intelligent robots are being developed in the form of autonomous vehicles. The anticipated widespread use of intelligent robots and their potential to do harm has raised interest in their security. This research evaluates a cyberattack on the machine learning policy of an autonomous vehicle by designing and attacking a robotic vehicle operating in a dynamic environment. The primary contribution of this research is an initial assessment of effective manipulation through an indirect attack on a robotic vehicle using the Q learning algorithm for real-time routing control. Secondly, the research highlights the effectiveness of this attack along with relevant artifact issues.

2017-12-28
Mondal, S. K., Sabyasachi, A. S., Muppala, J. K..  2017.  On Dependability, Cost and Security Trade-Off in Cloud Data Centers. 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). :11–19.

The performance, dependability, and security of cloud service systems are vital for the ongoing operation, control, and support. Thus, controlled improvement in service requires a comprehensive analysis and systematic identification of the fundamental underlying constituents of cloud using a rigorous discipline. In this paper, we introduce a framework which helps identifying areas for potential cloud service enhancements. A cloud service cannot be completed if there is a failure in any of its underlying resources. In addition, resources are kept offline for scheduled maintenance. We use redundant resources to mitigate the impact of failures/maintenance for ensuring performance and dependability; which helps enhancing security as well. For example, at least 4 replicas are required to defend the intrusion of a single instance or a single malicious attack/fault as defined by Byzantine Fault Tolerance (BFT). Data centers with high performance, dependability, and security are outsourced to the cloud computing environment with greater flexibility of cost of owing the computing infrastructure. In this paper, we analyze the effectiveness of redundant resource usage in terms of dependability metric and cost of service deployment based on the priority of service requests. The trade-off among dependability, cost, and security under different redundancy schemes are characterized through the comprehensive analytical models.