Visible to the public Biblio

Filters: Keyword is FDI attacks  [Clear All Filters]
2023-05-19
Chen, Yuhang, Long, Yue, Li, Tieshan.  2022.  Attacks Detection and Security Control Against False Data Injection Attacks Based on Interval Type-2 Fuzzy System. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
This paper is concered with the nonlinear cyber physical system (CPS) with uncertain parameters under false data injection (FDI) attacks. The interval type-2 (IT2) fuzzy model is utilized to approximate the nonlinear system, then the nonlinear system can be represented as a convex combination of linear systems. To detect the FDI attacks, a novel robust fuzzy extended state observer with H∞ preformance is proposed, where the fuzzy rules are utilized to the observer to estimate the FDI attacks. Utilizing the observation of the FDI attacks, a security control scheme is proposed in this paper, in which a compensator is designed to offset the FDI attacks. Simulation examples are given to illustrate the effecitveness of the proposed security scheme.
2022-03-22
Xu, Ben, Liu, Jun.  2021.  False Data Detection Based On LSTM Network In Smart Grid. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :314—317.
In contrast to traditional grids, smart grids can help utilities save energy, thereby reducing operating costs. In the smart grid, the quality of monitoring and control can be fully improved by combining computing and intelligent communication knowledge. However, this will expose the system to FDI attacks, and the system is vulnerable to intrusion. Therefore, it is very important to detect such erroneous data injection attacks and provide an algorithm to protect the system from such attacks. In this paper, a FDI detection method based on LSTM has been proposed, which is validated by the simulation on the ieee-14 bus platform.
2021-08-02
Pedramnia, Kiyana, Shojaei, Shayan.  2020.  Detection of False Data Injection Attack in Smart Grid Using Decomposed Nearest Neighbor Techniques. 2020 10th Smart Grid Conference (SGC). :1—6.
Smart grid communication system deeply rely on information technologies which makes it vulnerable to variable cyber-attacks. Among possible attacks, False Data Injection (FDI) Attack has created a severe threat to smart grid control system. Attackers can manipulate smart grid measurements such as collected data of phasor measurement units (PMU) by implementing FDI attacks. Detection of FDI attacks with a simple and effective approach, makes the system more reliable and prevents network outages. In this paper we propose a Decomposed Nearest Neighbor algorithm to detect FDI attacks. This algorithm improves traditional k-Nearest Neighbor by using metric learning. Also it learns the local-optima free distance metric by solving a convex optimization problem which makes it more accurate in decision making. We test the proposed method on PMU dataset and compare the results with other beneficial machine learning algorithms for FDI attack detection. Results demonstrate the effectiveness of the proposed approach.
2020-02-10
Niu, Xiangyu, Li, Jiangnan, Sun, Jinyuan, Tomsovic, Kevin.  2019.  Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–6.
Modern advances in sensor, computing, and communication technologies enable various smart grid applications. The heavy dependence on communication technology has highlighted the vulnerability of the electricity grid to false data injection (FDI) attacks that can bypass bad data detection mechanisms. Existing mitigation in the power system either focus on redundant measurements or protect a set of basic measurements. These methods make specific assumptions about FDI attacks, which are often restrictive and inadequate to deal with modern cyber threats. In the proposed approach, a deep learning based framework is used to detect injected data measurement. Our time-series anomaly detector adopts a Convolutional Neural Network (CNN) and a Long Short Term Memory (LSTM) network. To effectively estimate system variables, our approach observes both data measurements and network level features to jointly learn system states. The proposed system is tested on IEEE 39-bus system. Experimental analysis shows that the deep learning algorithm can identify anomalies which cannot be detected by traditional state estimation bad data detection.
2017-12-28
Lucia, W., Sinopoli, B., Franze, G..  2016.  A set-theoretic approach for secure and resilient control of Cyber-Physical Systems subject to false data injection attacks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

In this paper a novel set-theoretic control framework for Cyber-Physical Systems is presented. By resorting to set-theoretic ideas, an anomaly detector module and a control remediation strategy are formally derived with the aim to contrast cyber False Data Injection (FDI) attacks affecting the communication channels. The resulting scheme ensures Uniformly Ultimate Boundedness and constraints fulfillment regardless of any admissible attack scenario.