Visible to the public Biblio

Filters: Keyword is Experimental Evaluation  [Clear All Filters]
2020-10-26
Mutalemwa, Lilian C., Seok, Junhee, Shin, Seokjoo.  2019.  Experimental Evaluation of Source Location Privacy Routing Schemes and Energy Consumption Performance. 2019 19th International Symposium on Communications and Information Technologies (ISCIT). :86–90.
Network lifetime and energy consumption of sensor nodes have an inversely proportional relationship. Thus, it is important to ensure source location privacy (SLP) routing schemes are energy-efficient. This work performs an experimental evaluation of some existing routing schemes and proposes a new angle-based routing algorithm to modify the schemes. The dynamic route creation process of the modified schemes is characterized by processes which include determination of route and banned regions and computation of control angle and lead factor parameters. Results of the analysis show that the modified schemes are effective at obfuscating the adversaries to provide strong SLP protection. Furthermore, the modified schemes consume relatively lower energy and guarantee longer network lifetime.
2020-09-28
Li, Kai, Kurunathan, Harrison, Severino, Ricardo, Tovar, Eduardo.  2018.  Cooperative Key Generation for Data Dissemination in Cyber-Physical Systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :331–332.
Securing wireless communication is significant for privacy and confidentiality of sensing data in Cyber-Physical Systems (CPS). However, due to broadcast nature of radio channels, disseminating sensory data is vulnerable to eavesdropping and message modification. Generating secret keys by extracting the shared randomness in a wireless fading channel is a promising way to improve the communication security. In this poster, we present a novel secret key generation protocol for securing real-time data dissemination in CPS, where the sensor nodes cooperatively generate a shared key by estimating the quantized fading channel randomness. A 2-hop wireless sensor network testbed is built and preliminary experimental results show that the quantization intervals and distance between the nodes lead to a secret bit mismatch.
2018-07-06
Lampesberger, H..  2016.  An Incremental Learner for Language-Based Anomaly Detection in XML. 2016 IEEE Security and Privacy Workshops (SPW). :156–170.

The Extensible Markup Language (XML) is a complex language, and consequently, XML-based protocols are susceptible to entire classes of implicit and explicit security problems. Message formats in XML-based protocols are usually specified in XML Schema, and as a first-line defense, schema validation should reject malformed input. However, extension points in most protocol specifications break validation. Extension points are wildcards and considered best practice for loose composition, but they also enable an attacker to add unchecked content in a document, e.g., for a signature wrapping attack. This paper introduces datatyped XML visibly pushdown automata (dXVPAs) as language representation for mixed-content XML and presents an incremental learner that infers a dXVPA from example documents. The learner generalizes XML types and datatypes in terms of automaton states and transitions, and an inferred dXVPA converges to a good-enough approximation of the true language. The automaton is free from extension points and capable of stream validation, e.g., as an anomaly detector for XML-based protocols. For dealing with adversarial training data, two scenarios of poisoning are considered: a poisoning attack is either uncovered at a later time or remains hidden. Unlearning can therefore remove an identified poisoning attack from a dXVPA, and sanitization trims low-frequent states and transitions to get rid of hidden attacks. All algorithms have been evaluated in four scenarios, including a web service implemented in Apache Axis2 and Apache Rampart, where attacks have been simulated. In all scenarios, the learned automaton had zero false positives and outperformed traditional schema validation.

2017-12-28
Kabiri, M. N., Wannous, M..  2017.  An Experimental Evaluation of a Cloud-Based Virtual Computer Laboratory Using Openstack. 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). :667–672.

In previous work, we proposed a solution to facilitate access to computer science related courses and learning materials using cloud computing and mobile technologies. The solution was positively evaluated by the participants, but most of them indicated that it lacks support for laboratory activities. As it is well known that many of computer science subjects (e.g. Computer Networks, Information Security, Systems Administration, etc.) require a suitable and flexible environment where students can access a set of computers and network devices to successfully complete their hands-on activities. To achieve this criteria, we created a cloud-based virtual laboratory based on OpenStack cloud platform to facilitate access to virtual machine both locally and remotely. Cloud-based virtual labs bring a lot of advantages, such as increased manageability, scalability, high availability and flexibility, to name a few. This arrangement has been tested in a case-study exercise with a group of students as part of Computer Networks and System Administration courses at Kabul Polytechnic University in Afghanistan. To measure success, we introduced a level test to be completed by participants prior and after the experiment. As a result, the learners achieved an average of 17.1 % higher scores in the post level test after completing the practical exercises. Lastly, we distributed a questionnaire after the experiment and students provided positive feedback on the effectiveness and usefulness of the proposed solution.