Biblio
Air-gapped networks achieve security by using the physical isolation to keep the computers and network from the Internet. However, magnetic covert channels based on CPU utilization have been proposed to help secret data to escape the Faraday-cage and the air-gap. Despite the success of such cover channels, they suffer from the high risk of being detected by the transmitter computer and the challenge of installing malware into such a computer. In this paper, we propose MagView, a distributed magnetic cover channel, where sensitive information is embedded in other data such as video and can be transmitted over the air-gapped internal network. When any computer uses the data such as playing the video, the sensitive information will leak through the magnetic covert channel. The "separation" of information embedding and leaking, combined with the fact that the covert channel can be created on any computer, overcomes these limitations. We demonstrate that CPU utilization for video decoding can be effectively controlled by changing the video frame type and reducing the quantization parameter without video quality degradation. We prototype MagView and achieve up to 8.9 bps throughput with BER as low as 0.0057. Experiments under different environment are conducted to show the robustness of MagView. Limitations and possible countermeasures are also discussed.
Fog computing provides a new architecture for the implementation of the Internet of Things (IoT), which can connect sensor nodes to the cloud using the edge of the network. This structure has improved the latency and energy consumption in the cloud. In this heterogeneous and distributed environment, resource allocation is very important. Hence, scheduling will be a challenge to increase productivity and allocate resources appropriately to the tasks. Programs that run in this environment should be protected from intruders. We consider three parameters as authentication, integrity, and confidentiality to maintain security in fog devices. These parameters have time and computational overhead. In the proposed approach, we schedule the modules for the run in fog devices by heuristic algorithms based on data mining technique. The objective function is included CPU utilization, bandwidth, and security overhead. We compare the proposed algorithm with several heuristic algorithms. The results show that our proposed algorithm improved the average energy consumption of 63.27%, cost 44.71% relative to the PSO, ACO, SA algorithms.
Denial of Service (DoS) attacks is one of the major threats and among the hardest security problems in the Internet world. Of particular concern are Distributed Denial of Service (DDoS) attacks, whose impact can be proportionally severe. With little or no advance warning, an attacker can easily exhaust the computing resources of its victim within a short period of time. In this paper, we study the impact of a UDP flood attack on TCP throughput, round-trip time, and CPU utilization for a Web Server with the new generation of Linux platform, Linux Ubuntu 13. This paper also evaluates the impact of various defense mechanisms, including Access Control Lists (ACLs), Threshold Limit, Reverse Path Forwarding (IP Verify), and Network Load Balancing. Threshold Limit is found to be the most effective defense.
Distributed Denial of Service (DoS) attacks is one of the major threats and among the hardest security problems in the Internet world. In this paper, we study the impact of a UDP flood attack on TCP throughputs, round-trip time, and CPU utilization on the latest version of Windows and Linux platforms, namely, Windows Server 2012 and Linux Ubuntu 13. This paper also evaluates several defense mechanisms including Access Control Lists (ACLs), Threshold Limit, Reverse Path Forwarding (IP Verify), and Network Load Balancing. Threshold Limit defense gave better results than the other solutions.
Shared resources are an essential part of cloud computing. Virtualization and multi-tenancy provide a number of advantages for increasing resource utilization and for providing on demand elasticity. However, these cloud features also raise many security concerns related to cloud computing resources. In this paper, we propose an architecture and approach for leveraging the virtualization technology at the core of cloud computing to perform intrusion detection security using hypervisor performance metrics. Through the use of virtual machine performance metrics gathered from hypervisors, such as packets transmitted/received, block device read/write requests, and CPU utilization, we demonstrate and verify that suspicious activities can be profiled without detailed knowledge of the operating system running within the virtual machines. The proposed hypervisor-based cloud intrusion detection system does not require additional software installed in virtual machines and has many advantages compared to host-based and network based intrusion detection systems which can complement these traditional approaches to intrusion detection.
Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack, exhausts the resources of server/service and makes it unavailable for legitimate users. With increasing use of online services and attacks on these services, the importance of Intrusion Detection System (IDS) for detection of DoS/DDoS attacks has also grown. Detection accuracy & CPU utilization of Data mining based IDS is directly proportional to the quality of training dataset used to train it. Various preprocessing methods like normalization, discretization, fuzzification are used by researchers to improve the quality of training dataset. This paper evaluates the effect of various data preprocessing methods on the detection accuracy of DoS/DDoS attack detection IDS and proves that numeric to binary preprocessing method performs better compared to other methods. Experimental results obtained using KDD 99 dataset are provided to support the efficiency of proposed combination.