Biblio
Trust Relationships have shown great potential to improve recommendation quality, especially for cold start and sparse users. Since each user trust their friends in different degrees, there are numbers of works been proposed to take Trust Strength into account for recommender systems. However, these methods ignore the information of trust directions between users. In this paper, we propose a novel method to adaptively learn directive trust strength to improve trust-aware recommender systems. Advancing previous works, we propose to establish direction of trust strength by modeling the implicit relationships between users with roles of trusters and trustees. Specially, under new trust strength with directions, how to compute the directive trust strength is becoming a new challenge. Therefore, we present a novel method to adaptively learn directive trust strengths in a unified framework by enforcing the trust strength into range of [0, 1] through a mapping function. Our experiments on Epinions and Ciao datasets demonstrate that the proposed algorithm can effectively outperform several state-of-art algorithms on both MAE and RMSE metrics.
Feature selection is an important step in data analysis to address the curse of dimensionality. Such dimensionality reduction techniques are particularly important when if a classification is required and the model scales in polynomial time with the size of the feature (e.g., some applications include genomics, life sciences, cyber-security, etc.). Feature selection is the process of finding the minimum subset of features that allows for the maximum predictive power. Many of the state-of-the-art information-theoretic feature selection approaches use a greedy forward search; however, there are concerns with the search in regards to the efficiency and optimality. A unified framework was recently presented for information-theoretic feature selection that tied together many of the works in over the past twenty years. The work showed that joint mutual information maximization (JMI) is generally the best options; however, the complexity of greedy search for JMI scales quadratically and it is infeasible on high dimensional datasets. In this contribution, we propose a fast approximation of JMI based on information theory. Our approach takes advantage of decomposing the calculations within JMI to speed up a typical greedy search. We benchmarked the proposed approach against JMI on several UCI datasets, and we demonstrate that the proposed approach returns feature sets that are highly consistent with JMI, while decreasing the run time required to perform feature selection.