Visible to the public Biblio

Filters: Keyword is network applications  [Clear All Filters]
2022-03-01
Zhao, Ruijie, Li, Zhaojie, Xue, Zhi, Ohtsuki, Tomoaki, Gui, Guan.  2021.  A Novel Approach Based on Lightweight Deep Neural Network for Network Intrusion Detection. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
With the ubiquitous network applications and the continuous development of network attack technology, all social circles have paid close attention to the cyberspace security. Intrusion detection systems (IDS) plays a very important role in ensuring computer and communication systems security. Recently, deep learning has achieved a great success in the field of intrusion detection. However, the high computational complexity poses a major hurdle for the practical deployment of DL-based models. In this paper, we propose a novel approach based on a lightweight deep neural network (LNN) for IDS. We design a lightweight unit that can fully extract data features while reducing the computational burden by expanding and compressing feature maps. In addition, we use inverse residual structure and channel shuffle operation to achieve more effective training. Experiment results show that our proposed model for intrusion detection not only reduces the computational cost by 61.99% and the model size by 58.84%, but also achieves satisfactory accuracy and detection rate.
2020-05-29
Sattar, Muhammad Umar, Rehman, Rana Asif.  2019.  Interest Flooding Attack Mitigation in Named Data Networking Based VANETs. 2019 International Conference on Frontiers of Information Technology (FIT). :245—2454.

Nowadays network applications have more focus on content distribution which is hard to tackle in IP based Internet. Information Centric Network (ICN) have the ability to overcome this problem for various scenarios, specifically for Vehicular Ad Hoc Networks (VANETs). Conventional IP based system have issues like mobility management hence ICN solve this issue because data fetching is not dependent on a particular node or physical location. Many initial investigations have performed on an instance of ICN commonly known as Named Data Networking (NDN). However, NDN exposes the new type of security susceptibilities, poisoning cache attack, flooding Interest attack, and violation of privacy because the content in the network is called by the name. This paper focused on mitigation of Interest flooding attack by proposing new scheme, named Interest Flooding Attack Mitigation Scheme (IFAMS) in Vehicular Named Data Network (VNDN). Simulation results depict that proposed IFAMS scheme mitigates the Interest flooding attack in the network.

2018-05-09
Aliyu, A. L., Bull, P., Abdallah, A..  2017.  A Trust Management Framework for Network Applications within an SDN Environment. 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). :93–98.

Software Defined Networking (SDN) is an emerging paradigm that changes the way networks are managed by separating the control plane from data plane and making networks programmable. The separation brings about flexibility, automation, orchestration and offers savings in both capital and operational expenditure. Despite all the advantages offered by SDN it introduces new threats that did not exist before or were harder to exploit in traditional networks, making network penetration potentially easier. One of the key threat to SDN is the authentication and authorisation of network applications that control network behaviour (unlike the traditional network where network devices like routers and switches are autonomous and run proprietary software and protocols to control the network). This paper proposes a mechanism that helps the control layer authenticate network applications and set authorisation permissions that constrict manipulation of network resources.

2017-12-28
Vizarreta, P., Heegaard, P., Helvik, B., Kellerer, W., Machuca, C. M..  2017.  Characterization of failure dynamics in SDN controllers. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

With Software Defined Networking (SDN) the control plane logic of forwarding devices, switches and routers, is extracted and moved to an entity called SDN controller, which acts as a broker between the network applications and physical network infrastructure. Failures of the SDN controller inhibit the network ability to respond to new application requests and react to events coming from the physical network. Despite of the huge impact that a controller has on the network performance as a whole, a comprehensive study on its failure dynamics is still missing in the state of the art literature. The goal of this paper is to analyse, model and evaluate the impact that different controller failure modes have on its availability. A model in the formalism of Stochastic Activity Networks (SAN) is proposed and applied to a case study of a hypothetical controller based on commercial controller implementations. In case study we show how the proposed model can be used to estimate the controller steady state availability, quantify the impact of different failure modes on controller outages, as well as the effects of software ageing, and impact of software reliability growth on the transient behaviour.