Biblio
Cloud computing, supported by advancements in virtualisation and distributed computing, became the default options for implementing the IT infrastructure of organisations. Medical data and in particular medical images have increasing storage space and remote access requirements. Cloud computing satisfies these requirements but unclear safeguards on data security can expose sensitive data to possible attacks. Furthermore, recent changes in legislation imposed additional security constraints in technology to ensure the privacy of individuals and the integrity of data when stored in the cloud. In contrast with this trend, current data security methods, based on encryption, create an additional overhead to the performance, and often they are not allowed in public cloud servers. Hence, this paper proposes a mechanism that combines data fragmentation to protect medical images on the public cloud servers, and a NoSQL database to secure an efficient organisation of such data. Results of this paper indicate that the latency of the proposed method is significantly lower if compared with AES, one of the most adopted data encryption mechanisms. Therefore, the proposed method is an optimal trade-off in environments with low latency requirements or limited resources.
Increasingly organizations are collecting ever larger amounts of data to build complex data analytics, machine learning and AI models. Furthermore, the data needed for building such models may be unstructured (e.g., text, image, and video). Hence such data may be stored in different data management systems ranging from relational databases to newer NoSQL databases tailored for storing unstructured data. Furthermore, data scientists are increasingly using programming languages such as Python, R etc. to process data using many existing libraries. In some cases, the developed code will be automatically executed by the NoSQL system on the stored data. These developments indicate the need for a data security and privacy solution that can uniformly protect data stored in many different data management systems and enforce security policies even if sensitive data is processed using a data scientist submitted complex program. In this paper, we introduce our vision for building such a solution for protecting big data. Specifically, our proposed system system allows organizations to 1) enforce policies that control access to sensitive data, 2) keep necessary audit logs automatically for data governance and regulatory compliance, 3) sanitize and redact sensitive data on-the-fly based on the data sensitivity and AI model needs, 4) detect potentially unauthorized or anomalous access to sensitive data, 5) automatically create attribute-based access control policies based on data sensitivity and data type.
Security within the IoT is currently below par. Common security issues include IoT device vendors not following security best practices and/or omitting crucial security controls and features within their devices, lack of defined and mandated IoT security standards, default IoT device configurations, missing secure update mechanisms to rectify security flaws discovered in IoT devices and the overall unintended consequence of complexity - the attack surface of networks comprising IoT devices can increase exponentially with the addition of each new device. In this paper we set out an approach using graphs and graph databases to understand IoT network complexity and the impact that different devices and their profiles have on the overall security of the underlying network and its associated data.
NoSQL databases have gained a lot of popularity over the last few years. They are now used in many new system implementations that work with vast amounts of data. This data will typically also include sensitive information that needs to be secured. NoSQL databases are also underlying a number of cloud implementations which are increasingly being used to store sensitive information by various organisations. This has made NoSQL databases a new target for hackers and other state sponsored actors. Forensic examinations of compromised systems will need to be conducted to determine what exactly transpired and who was responsible. This paper examines specifically if NoSQL databases have security features that leave relevant traces so that accurate forensic attribution can be conducted. The seeming lack of default security measures such as access control and logging has prompted this examination. A survey into the top ranked NoSQL databases was conducted to establish what authentication and authorisation features are available. Additionally the provided logging mechanisms were also examined since access control without any auditing would not aid forensic attribution tremendously. Some of the surveyed NoSQL databases do not provide adequate access control mechanisms and logging features that leave relevant traces to allow forensic attribution to be done using those. The other surveyed NoSQL databases did provide adequate mechanisms and logging traces for forensic attribution, but they are not enabled or configured by default. This means that in many cases they might not be available, leading to insufficient information to perform accurate forensic attribution even on those databases.
NoSQL databases have become popular with enterprises due to their scalable and flexible storage management of big data. Nevertheless, their popularity also brings up security concerns. Most NoSQL databases lacked secure data encryption, relying on developers to implement cryptographic methods at application level or middleware layer as a wrapper around the database. While this approach protects the integrity of data, it increases the difficulty of executing queries. We were motivated to design a system that not only provides NoSQL databases with the necessary data security, but also supports the execution of query over encrypted data. Furthermore, how to exploit the distributed fashion of NoSQL databases to deliver high performance and scalability with massive client accesses is another important challenge. In this research, we introduce Crypt-NoSQL, the first prototype to support execution of query over encrypted data on NoSQL databases with high performance. Three different models of Crypt-NoSQL were proposed and performance was evaluated with Yahoo! Cloud Service Benchmark (YCSB) considering an enormous number of clients. Our experimental results show that Crypt-NoSQL can process queries over encrypted data with high performance and scalability. A guidance of establishing service level agreement (SLA) for Crypt-NoSQL as a cloud service is also proposed.